

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Introduction

Composer is a tool for dependency management in PHP. It allows you to declare
the libraries your project depends on and it will manage (install/update) them
for you.

Dependency management

Composer is not a package manager in the same sense as Yum or Apt are. Yes,
it deals with “packages” or libraries, but it manages them on a per-project
basis, installing them in a directory (e.g. vendor) inside your project. By
default it does not install anything globally. Thus, it is a dependency
manager. It does however support a “global” project for convenience via the
global command.

This idea is not new and Composer is strongly inspired by node’s
npm [https://www.npmjs.com/] and ruby’s bundler [https://bundler.io/].

Suppose:

	You have a project that depends on a number of libraries.

	Some of those libraries depend on other libraries.

Composer:

	Enables you to declare the libraries you depend on.

	Finds out which versions of which packages can and need to be installed, and
installs them (meaning it downloads them into your project).

See the Basic usage chapter for more details on declaring
dependencies.

System Requirements

Composer requires PHP 5.3.2+ to run. A few sensitive php settings and compile
flags are also required, but when using the installer you will be warned about
any incompatibilities.

To install packages from sources instead of simple zip archives, you will need
git, svn, fossil or hg depending on how the package is version-controlled.

Composer is multi-platform and we strive to make it run equally well on Windows,
Linux and macOS.

Installation - Linux / Unix / macOS

Downloading the Composer Executable

Composer offers a convenient installer that you can execute directly from the
command line. Feel free to download this file [https://getcomposer.org/installer]
or review it on GitHub [https://github.com/composer/getcomposer.org/blob/master/web/installer]
if you wish to know more about the inner workings of the installer. The source
is plain PHP.

There are in short, two ways to install Composer. Locally as part of your
project, or globally as a system wide executable.

Locally

To install Composer locally, run the installer in your project directory. See
the Download page [https://getcomposer.org/download/] for instructions.

The installer will check a few PHP settings and then download composer.phar
to your working directory. This file is the Composer binary. It is a PHAR
(PHP archive), which is an archive format for PHP which can be run on
the command line, amongst other things.

Now run php composer.phar in order to run Composer.

You can install Composer to a specific directory by using the --install-dir
option and additionally (re)name it as well using the --filename option. When
running the installer when following
the Download page instructions [https://getcomposer.org/download/] add the
following parameters:

php composer-setup.php --install-dir=bin --filename=composer

Now run php bin/composer in order to run Composer.

Globally

You can place the Composer PHAR anywhere you wish. If you put it in a directory
that is part of your PATH, you can access it globally. On Unix systems you
can even make it executable and invoke it without directly using the php
interpreter.

After running the installer following the Download page instructions [https://getcomposer.org/download/]
you can run this to move composer.phar to a directory that is in your path:

mv composer.phar /usr/local/bin/composer

If you like to install it only for your user and avoid requiring root permissions,
you can use ~/.local/bin instead which is available by default on some
Linux distributions.

Note: If the above fails due to permissions, you may need to run it again
with sudo.

Note: On some versions of macOS the /usr directory does not exist by
default. If you receive the error “/usr/local/bin/composer: No such file or
directory” then you must create the directory manually before proceeding:
mkdir -p /usr/local/bin.

Note: For information on changing your PATH, please read the
Wikipedia article [https://en.wikipedia.org/wiki/PATH_(variable)] and/or use Google.

Now run composer in order to run Composer instead of php composer.phar.

Installation - Windows

Using the Installer

This is the easiest way to get Composer set up on your machine.

Download and run
Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe]. It will
install the latest Composer version and set up your PATH so that you can
call composer from any directory in your command line.

Note: Close your current terminal. Test usage with a new terminal: This is
important since the PATH only gets loaded when the terminal starts.

Manual Installation

Change to a directory on your PATH and run the installer following
the Download page instructions [https://getcomposer.org/download/]
to download composer.phar.

Create a new composer.bat file alongside composer.phar:

C:\bin>echo @php "%~dp0composer.phar" %*>composer.bat

Add the directory to your PATH environment variable if it isn’t already.
For information on changing your PATH variable, please see
this article [https://www.computerhope.com/issues/ch000549.htm] and/or
use Google.

Close your current terminal. Test usage with a new terminal:

C:\Users\username>composer -V
Composer version 1.0.0 2016-01-10 20:34:53

Using Composer

Now that you’ve installed Composer, you are ready to use it! Head on over to the
next chapter for a short and simple demonstration.

Basic usage →

Basic usage

Introduction

For our basic usage introduction, we will be installing monolog/monolog,
a logging library. If you have not yet installed Composer, refer to the
Intro chapter.

Note: for the sake of simplicity, this introduction will assume you
have performed a local install of Composer.

composer.json: Project setup

To start using Composer in your project, all you need is a composer.json
file. This file describes the dependencies of your project and may contain
other metadata as well.

The require key

The first (and often only) thing you specify in composer.json is the
require key. You are simply telling Composer which
packages your project depends on.

{
 "require": {
 "monolog/monolog": "1.0.*"
 }
}

As you can see, require takes an object that maps
package names (e.g. monolog/monolog) to version constraints (e.g.
1.0.*).

Composer uses this information to search for the right set of files in package
“repositories” that you register using the repositories
key, or in Packagist, the default package repository. In the above example,
since no other repository has been registered in the composer.json file, it is
assumed that the monolog/monolog package is registered on Packagist. (See more
about Packagist below, or read more about repositories
here).

Package names

The package name consists of a vendor name and the project’s name. Often these
will be identical - the vendor name only exists to prevent naming clashes. For
example, it would allow two different people to create a library named json.
One might be named igorw/json while the other might be seldaek/json.

Read more about publishing packages and package naming here.
(Note that you can also specify “platform packages” as dependencies, allowing
you to require certain versions of server software. See
platform packages below.)

Package version constraints

In our example, we are requesting the Monolog package with the version constraint
1.0.* [https://semver.mwl.be/#?package=monolog%2Fmonolog&version=1.0.*].
This means any version in the 1.0 development branch, or any version that is
greater than or equal to 1.0 and less than 1.1 (>=1.0 <1.1).

Please read versions for more in-depth information on
versions, how versions relate to each other, and on version constraints.

How does Composer download the right files? When you specify a dependency in
composer.json, Composer first takes the name of the package that you have requested
and searches for it in any repositories that you have registered using the
repositories key. If you have not registered
any extra repositories, or it does not find a package with that name in the
repositories you have specified, it falls back to Packagist (more below).

When Composer finds the right package, either in Packagist or in a repo you have specified,
it then uses the versioning features of the package’s VCS (i.e., branches and tags)
to attempt to find the best match for the version constraint you have specified. Be sure to read
about versions and package resolution in the versions article.

Note: If you are trying to require a package but Composer throws an error
regarding package stability, the version you have specified may not meet your
default minimum stability requirements. By default only stable releases are taken
into consideration when searching for valid package versions in your VCS.

You might run into this if you are trying to require dev, alpha, beta, or RC
versions of a package. Read more about stability flags and the minimum-stability
key on the schema page.

Installing dependencies

To install the defined dependencies for your project, run the
install command.

php composer.phar install

When you run this command, one of two things may happen:

Installing without composer.lock

If you have never run the command before and there is also no composer.lock file present,
Composer simply resolves all dependencies listed in your composer.json file and downloads
the latest version of their files into the vendor directory in your project. (The vendor
directory is the conventional location for all third-party code in a project). In our
example from above, you would end up with the Monolog source files in
vendor/monolog/monolog/. If Monolog listed any dependencies, those would also be in
folders under vendor/.

Tip: If you are using git for your project, you probably want to add
vendor in your .gitignore. You really don’t want to add all of that
third-party code to your versioned repository.

When Composer has finished installing, it writes all of the packages and the exact versions
of them that it downloaded to the composer.lock file, locking the project to those specific
versions. You should commit the composer.lock file to your project repo so that all people
working on the project are locked to the same versions of dependencies (more below).

Installing with composer.lock

This brings us to the second scenario. If there is already a composer.lock file as well as a
composer.json file when you run composer install, it means either you ran the
install command before, or someone else on the project ran the install command and
committed the composer.lock file to the project (which is good).

Either way, running install when a composer.lock file is present resolves and installs
all dependencies that you listed in composer.json, but Composer uses the exact versions listed
in composer.lock to ensure that the package versions are consistent for everyone
working on your project. As a result you will have all dependencies requested by your
composer.json file, but they may not all be at the very latest available versions
(some of the dependencies listed in the composer.lock file may have released newer versions since
the file was created). This is by design, it ensures that your project does not break because of
unexpected changes in dependencies.

Commit your composer.lock file to version control

Committing this file to VC is important because it will cause anyone who sets
up the project to use the exact same
versions of the dependencies that you are using. Your CI server, production
machines, other developers in your team, everything and everyone runs on the
same dependencies, which mitigates the potential for bugs affecting only some
parts of the deployments. Even if you develop alone, in six months when
reinstalling the project you can feel confident the dependencies installed are
still working even if your dependencies released many new versions since then.
(See note below about using the update command.)

Updating dependencies to their latest versions

As mentioned above, the composer.lock file prevents you from automatically getting
the latest versions of your dependencies. To update to the latest versions, use the
update command. This will fetch the latest matching
versions (according to your composer.json file) and update the lock file
with the new versions. (This is equivalent to deleting the composer.lock file
and running install again.)

php composer.phar update

Note: Composer will display a Warning when executing an install command
if the composer.lock has not been updated since changes were made to the
composer.json that might affect dependency resolution.

If you only want to install or update one dependency, you can whitelist them:

php composer.phar update monolog/monolog [...]

Note: For libraries it is not necessary to commit the lock
file, see also: Libraries - Lock file.

Packagist

Packagist [https://packagist.org/] is the main Composer repository. A Composer
repository is basically a package source: a place where you can get packages
from. Packagist aims to be the central repository that everybody uses. This
means that you can automatically require any package that is available there,
without further specifying where Composer should look for the package.

If you go to the Packagist website [https://packagist.org/] (packagist.org),
you can browse and search for packages.

Any open source project using Composer is recommended to publish their packages
on Packagist. A library does not need to be on Packagist to be used by Composer,
but it enables discovery and adoption by other developers more quickly.

Platform packages

Composer has platform packages, which are virtual packages for things that are
installed on the system but are not actually installable by Composer. This
includes PHP itself, PHP extensions and some system libraries.

	php represents the PHP version of the user, allowing you to apply
constraints, e.g. ^7.1. To require a 64bit version of php, you can
require the php-64bit package.

	hhvm represents the version of the HHVM runtime and allows you to apply
a constraint, e.g., ^2.3.

	ext-<name> allows you to require PHP extensions (includes core
extensions). Versioning can be quite inconsistent here, so it’s often
a good idea to set the constraint to *. An example of an extension
package name is ext-gd.

	lib-<name> allows constraints to be made on versions of libraries used by
PHP. The following are available: curl, iconv, icu, libxml,
openssl, pcre, uuid, xsl.

You can use show --platform to get a list of your locally
available platform packages.

Autoloading

For libraries that specify autoload information, Composer generates a
vendor/autoload.php file. You can simply include this file and start
using the classes that those libraries provide without any extra work:

require __DIR__ . '/vendor/autoload.php';

$log = new Monolog\Logger('name');
$log->pushHandler(new Monolog\Handler\StreamHandler('app.log', Monolog\Logger::WARNING));
$log->addWarning('Foo');

You can even add your own code to the autoloader by adding an
autoload field to composer.json.

{
 "autoload": {
 "psr-4": {"Acme\\": "src/"}
 }
}

Composer will register a PSR-4 [http://www.php-fig.org/psr/psr-4/] autoloader
for the Acme namespace.

You define a mapping from namespaces to directories. The src directory would
be in your project root, on the same level as vendor directory is. An example
filename would be src/Foo.php containing an Acme\Foo class.

After adding the autoload field, you have to re-run
dump-autoload to re-generate the
vendor/autoload.php file.

Including that file will also return the autoloader instance, so you can store
the return value of the include call in a variable and add more namespaces.
This can be useful for autoloading classes in a test suite, for example.

$loader = require __DIR__ . '/vendor/autoload.php';
$loader->addPsr4('Acme\\Test\\', __DIR__);

In addition to PSR-4 autoloading, Composer also supports PSR-0, classmap and
files autoloading. See the autoload reference for
more information.

See also the docs on optimizing the autoloader.

Note: Composer provides its own autoloader. If you don’t want to use that
one, you can include vendor/composer/autoload_*.php files, which return
associative arrays allowing you to configure your own autoloader.

← Intro | Libraries →

Libraries

This chapter will tell you how to make your library installable through
Composer.

Every project is a package

As soon as you have a composer.json in a directory, that directory is a
package. When you add a require to a project, you are
making a package that depends on other packages. The only difference between
your project and a library is that your project is a package without a name.

In order to make that package installable you need to give it a name. You do
this by adding the name property in composer.json:

{
 "name": "acme/hello-world",
 "require": {
 "monolog/monolog": "1.0.*"
 }
}

In this case the project name is acme/hello-world, where acme is the vendor
name. Supplying a vendor name is mandatory.

Note: If you don’t know what to use as a vendor name, your GitHub
username is usually a good bet. While package names are case insensitive, the
convention is all lowercase and dashes for word separation.

Library Versioning

In the vast majority of cases, you will be maintaining your library using some
sort of version control system like git, svn, hg or fossil. In these cases,
Composer infers versions from your VCS and you should not specify a version
in your composer.json file. (See the Versions article
to learn about how Composer uses VCS branches and tags to resolve version
constraints.)

If you are maintaining packages by hand (i.e., without a VCS), you’ll need to
specify the version explicitly by adding a version value in your composer.json
file:

{
 "version": "1.0.0"
}

Note: When you add a hardcoded version to a VCS, the version will conflict
with tag names. Composer will not be able to determine the version number.

VCS Versioning

Composer uses your VCS’s branch and tag features to resolve the version
constraints you specify in your require field to specific sets of files.
When determining valid available versions, Composer looks at all of your tags
and branches and translates their names into an internal list of options that
it then matches against the version constraint you provided.

For more on how Composer treats tags and branches and how it resolves package
version constraints, read the versions article.

Lock file

For your library you may commit the composer.lock file if you want to. This
can help your team to always test against the same dependency versions.
However, this lock file will not have any effect on other projects that depend
on it. It only has an effect on the main project.

If you do not want to commit the lock file and you are using git, add it to
the .gitignore.

Publishing to a VCS

Once you have a VCS repository (version control system, e.g. git) containing a
composer.json file, your library is already composer-installable. In this
example we will publish the acme/hello-world library on GitHub under
github.com/username/hello-world.

Now, to test installing the acme/hello-world package, we create a new
project locally. We will call it acme/blog. This blog will depend on
acme/hello-world, which in turn depends on monolog/monolog. We can
accomplish this by creating a new blog directory somewhere, containing a
composer.json:

{
 "name": "acme/blog",
 "require": {
 "acme/hello-world": "dev-master"
 }
}

The name is not needed in this case, since we don’t want to publish the blog
as a library. It is added here to clarify which composer.json is being
described.

Now we need to tell the blog app where to find the hello-world dependency.
We do this by adding a package repository specification to the blog’s
composer.json:

{
 "name": "acme/blog",
 "repositories": [
 {
 "type": "vcs",
 "url": "https://github.com/username/hello-world"
 }
],
 "require": {
 "acme/hello-world": "dev-master"
 }
}

For more details on how package repositories work and what other types are
available, see Repositories.

That’s all. You can now install the dependencies by running Composer’s
install command!

Recap: Any git/svn/hg/fossil repository containing a composer.json can be
added to your project by specifying the package repository and declaring the
dependency in the require field.

Publishing to packagist

Alright, so now you can publish packages. But specifying the VCS repository
every time is cumbersome. You don’t want to force all your users to do that.

The other thing that you may have noticed is that we did not specify a package
repository for monolog/monolog. How did that work? The answer is Packagist.

Packagist [https://packagist.org/] is the main package repository for
Composer, and it is enabled by default. Anything that is published on
Packagist is available automatically through Composer. Since
Monolog is on Packagist [https://packagist.org/packages/monolog/monolog], we
can depend on it without having to specify any additional repositories.

If we wanted to share hello-world with the world, we would publish it on
Packagist as well. Doing so is really easy.

You simply visit Packagist [https://packagist.org] and hit the “Submit”
button. This will prompt you to sign up if you haven’t already, and then
allows you to submit the URL to your VCS repository, at which point Packagist
will start crawling it. Once it is done, your package will be available to
anyone!

← Basic usage | Command-line interface →

Command-line interface / Commands

You’ve already learned how to use the command-line interface to do some
things. This chapter documents all the available commands.

To get help from the command-line, simply call composer or composer list
to see the complete list of commands, then --help combined with any of those
can give you more information.

As Composer uses symfony/console [https://github.com/symfony/console] you can call commands by short name if it’s not ambiguous.

composer dump

calls composer dump-autoload.

Global Options

The following options are available with every command:

	–verbose (-v): Increase verbosity of messages.

	–help (-h): Display help information.

	–quiet (-q): Do not output any message.

	–no-interaction (-n): Do not ask any interactive question.

	–no-plugins: Disables plugins.

	–no-cache: Disables the use of the cache directory. Same as setting the COMPOSER_CACHE_DIR
env var to /dev/null (or NUL on Windows).

	–working-dir (-d): If specified, use the given directory as working directory.

	–profile: Display timing and memory usage information

	–ansi: Force ANSI output.

	–no-ansi: Disable ANSI output.

	–version (-V): Display this application version.

Process Exit Codes

	0: OK

	1: Generic/unknown error code

	2: Dependency solving error code

init

In the Libraries chapter we looked at how to create a
composer.json by hand. There is also an init command available that makes
it a bit easier to do this.

When you run the command it will interactively ask you to fill in the fields,
while using some smart defaults.

php composer.phar init

Options

	–name: Name of the package.

	–description: Description of the package.

	–author: Author name of the package.

	–type: Type of package.

	–homepage: Homepage of the package.

	–require: Package to require with a version constraint. Should be
in format foo/bar:1.0.0.

	–require-dev: Development requirements, see –require.

	–stability (-s): Value for the minimum-stability field.

	–license (-l): License of package.

	–repository: Provide one (or more) custom repositories. They will be stored
in the generated composer.json, and used for auto-completion when prompting for
the list of requires. Every repository can be either an HTTP URL pointing
to a composer repository or a JSON string which similar to what the
repositories key accepts.

install / i

The install command reads the composer.json file from the current
directory, resolves the dependencies, and installs them into vendor.

php composer.phar install

If there is a composer.lock file in the current directory, it will use the
exact versions from there instead of resolving them. This ensures that
everyone using the library will get the same versions of the dependencies.

If there is no composer.lock file, Composer will create one after dependency
resolution.

Options

	–prefer-source: There are two ways of downloading a package: source
and dist. For stable versions Composer will use the dist by default.
The source is a version control repository. If --prefer-source is
enabled, Composer will install from source if there is one. This is
useful if you want to make a bugfix to a project and get a local git
clone of the dependency directly.

	–prefer-dist: Reverse of --prefer-source, Composer will install
from dist if possible. This can speed up installs substantially on build
servers and other use cases where you typically do not run updates of the
vendors. It is also a way to circumvent problems with git if you do not
have a proper setup.

	–dry-run: If you want to run through an installation without actually
installing a package, you can use --dry-run. This will simulate the
installation and show you what would happen.

	–dev: Install packages listed in require-dev (this is the default behavior).

	–no-dev: Skip installing packages listed in require-dev. The autoloader
generation skips the autoload-dev rules.

	–no-autoloader: Skips autoloader generation.

	–no-scripts: Skips execution of scripts defined in composer.json.

	–no-progress: Removes the progress display that can mess with some
terminals or scripts which don’t handle backspace characters.

	–no-suggest: Skips suggested packages in the output.

	–optimize-autoloader (-o): Convert PSR-0/4 autoloading to classmap to get a faster
autoloader. This is recommended especially for production, but can take
a bit of time to run so it is currently not done by default.

	–classmap-authoritative (-a): Autoload classes from the classmap only.
Implicitly enables --optimize-autoloader.

	–apcu-autoloader: Use APCu to cache found/not-found classes.

	–ignore-platform-reqs: ignore php, hhvm, lib-* and ext-*
requirements and force the installation even if the local machine does not
fulfill these. See also the platform config option.

update / u

In order to get the latest versions of the dependencies and to update the
composer.lock file, you should use the update command. This command is also
aliased as upgrade as it does the same as upgrade does if you are thinking
of apt-get or similar package managers.

php composer.phar update

This will resolve all dependencies of the project and write the exact versions
into composer.lock.

If you only want to update a few packages and not all, you can list them as such:

php composer.phar update vendor/package vendor/package2

You can also use wildcards to update a bunch of packages at once:

php composer.phar update "vendor/*"

Options

	–prefer-source: Install packages from source when available.

	–prefer-dist: Install packages from dist when available.

	–dry-run: Simulate the command without actually doing anything.

	–dev: Install packages listed in require-dev (this is the default behavior).

	–no-dev: Skip installing packages listed in require-dev. The autoloader generation skips the autoload-dev rules.

	–lock: Only updates the lock file hash to suppress warning about the
lock file being out of date.

	–no-autoloader: Skips autoloader generation.

	–no-scripts: Skips execution of scripts defined in composer.json.

	–no-progress: Removes the progress display that can mess with some
terminals or scripts which don’t handle backspace characters.

	–no-suggest: Skips suggested packages in the output.

	–with-dependencies: Add also dependencies of whitelisted packages to the whitelist, except those that are root requirements.

	–with-all-dependencies: Add also all dependencies of whitelisted packages to the whitelist, including those that are root requirements.

	–optimize-autoloader (-o): Convert PSR-0/4 autoloading to classmap to get a faster
autoloader. This is recommended especially for production, but can take
a bit of time to run so it is currently not done by default.

	–classmap-authoritative (-a): Autoload classes from the classmap only.
Implicitly enables --optimize-autoloader.

	–apcu-autoloader: Use APCu to cache found/not-found classes.

	–ignore-platform-reqs: ignore php, hhvm, lib-* and ext-*
requirements and force the installation even if the local machine does not
fulfill these. See also the platform config option.

	–prefer-stable: Prefer stable versions of dependencies.

	–prefer-lowest: Prefer lowest versions of dependencies. Useful for testing minimal
versions of requirements, generally used with --prefer-stable.

	–interactive: Interactive interface with autocompletion to select the packages to update.

	–root-reqs: Restricts the update to your first degree dependencies.

require

The require command adds new packages to the composer.json file from
the current directory. If no file exists one will be created on the fly.

php composer.phar require

After adding/changing the requirements, the modified requirements will be
installed or updated.

If you do not want to choose requirements interactively, you can pass them
to the command.

php composer.phar require vendor/package:2.* vendor/package2:dev-master

If you do not specify a package, composer will prompt you to search for a package, and given results, provide a list of matches to require.

Options

	–dev: Add packages to require-dev.

	–prefer-source: Install packages from source when available.

	–prefer-dist: Install packages from dist when available.

	–no-progress: Removes the progress display that can mess with some
terminals or scripts which don’t handle backspace characters.

	–no-suggest: Skips suggested packages in the output.

	–no-update: Disables the automatic update of the dependencies.

	–no-scripts: Skips execution of scripts defined in composer.json.

	–update-no-dev: Run the dependency update with the --no-dev option.

	–update-with-dependencies: Also update dependencies of the newly required packages, except those that are root requirements.

	–update-with-all-dependencies: Also update dependencies of the newly required packages, including those that are root requirements.

	–ignore-platform-reqs: ignore php, hhvm, lib-* and ext-*
requirements and force the installation even if the local machine does not
fulfill these. See also the platform config option.

	–prefer-stable: Prefer stable versions of dependencies.

	–prefer-lowest: Prefer lowest versions of dependencies. Useful for testing minimal
versions of requirements, generally used with --prefer-stable.

	–sort-packages: Keep packages sorted in composer.json.

	–optimize-autoloader (-o): Convert PSR-0/4 autoloading to classmap to
get a faster autoloader. This is recommended especially for production, but
can take a bit of time to run so it is currently not done by default.

	–classmap-authoritative (-a): Autoload classes from the classmap only.
Implicitly enables --optimize-autoloader.

	–apcu-autoloader: Use APCu to cache found/not-found classes.

remove

The remove command removes packages from the composer.json file from
the current directory.

php composer.phar remove vendor/package vendor/package2

After removing the requirements, the modified requirements will be
uninstalled.

Options

	–dev: Remove packages from require-dev.

	–no-progress: Removes the progress display that can mess with some
terminals or scripts which don’t handle backspace characters.

	–no-update: Disables the automatic update of the dependencies.

	–no-scripts: Skips execution of scripts defined in composer.json.

	–update-no-dev: Run the dependency update with the –no-dev option.

	–update-with-dependencies: Also update dependencies of the removed packages.

	–ignore-platform-reqs: ignore php, hhvm, lib-* and ext-*
requirements and force the installation even if the local machine does not
fulfill these. See also the platform config option.

	–optimize-autoloader (-o): Convert PSR-0/4 autoloading to classmap to
get a faster autoloader. This is recommended especially for production, but
can take a bit of time to run so it is currently not done by default.

	–classmap-authoritative (-a): Autoload classes from the classmap only.
Implicitly enables --optimize-autoloader.

	–apcu-autoloader: Use APCu to cache found/not-found classes.

check-platform-reqs

The check-platform-reqs command checks that your PHP and extensions versions
match the platform requirements of the installed packages. This can be used
to verify that a production server has all the extensions needed to run a
project after installing it for example.

Unlike update/install, this command will ignore config.platform settings and
check the real platform packages so you can be certain you have the required
platform dependencies.

global

The global command allows you to run other commands like install, remove, require
or update as if you were running them from the COMPOSER_HOME
directory.

This is merely a helper to manage a project stored in a central location that
can hold CLI tools or Composer plugins that you want to have available everywhere.

This can be used to install CLI utilities globally. Here is an example:

php composer.phar global require friendsofphp/php-cs-fixer

Now the php-cs-fixer binary is available globally. Make sure your global
vendor binaries directory is in your $PATH
environment variable, you can get its location with the following command :

php composer.phar global config bin-dir --absolute

If you wish to update the binary later on you can run a global update:

php composer.phar global update

search

The search command allows you to search through the current project’s package
repositories. Usually this will be packagist. You simply pass it the
terms you want to search for.

php composer.phar search monolog

You can also search for more than one term by passing multiple arguments.

Options

	–only-name (-N): Search only in name.

	–type (-t): Search for a specific package type.

show

To list all of the available packages, you can use the show command.

php composer.phar show

To filter the list you can pass a package mask using wildcards.

php composer.phar show monolog/*

monolog/monolog 1.19.0 Sends your logs to files, sockets, inboxes, databases and various web services

If you want to see the details of a certain package, you can pass the package
name.

php composer.phar show monolog/monolog

name : monolog/monolog
versions : master-dev, 1.0.2, 1.0.1, 1.0.0, 1.0.0-RC1
type : library
names : monolog/monolog
source : [git] https://github.com/Seldaek/monolog.git 3d4e60d0cbc4b888fe5ad223d77964428b1978da
dist : [zip] https://github.com/Seldaek/monolog/zipball/3d4e60d0cbc4b888fe5ad223d77964428b1978da 3d4e60d0cbc4b888fe5ad223d77964428b1978da
license : MIT

autoload
psr-0
Monolog : src/

requires
php >=5.3.0

You can even pass the package version, which will tell you the details of that
specific version.

php composer.phar show monolog/monolog 1.0.2

Options

	–all : List all packages available in all your repositories.

	–installed (-i): List the packages that are installed (this is enabled by default, and deprecated).

	–platform (-p): List only platform packages (php & extensions).

	–available (-a): List available packages only.

	–self (-s): List the root package info.

	–name-only (-N): List package names only.

	–path (-P): List package paths.

	–tree (-t): List your dependencies as a tree. If you pass a package name it will show the dependency tree for that package.

	–latest (-l): List all installed packages including their latest version.

	–outdated (-o): Implies –latest, but this lists only packages that have a newer version available.

	–minor-only (-m): Use with –latest. Only shows packages that have minor SemVer-compatible updates.

	–direct (-D): Restricts the list of packages to your direct dependencies.

	–strict: Return a non-zero exit code when there are outdated packages.

	–format (-f): Lets you pick between text (default) or json output format.

outdated

The outdated command shows a list of installed packages that have updates available,
including their current and latest versions. This is basically an alias for
composer show -lo.

The color coding is as such:

	green (=): Dependency is in the latest version and is up to date.

	yellow (~): Dependency has a new version available that includes backwards compatibility breaks according to semver, so upgrade when
you can but it may involve work.

	red (!): Dependency has a new version that is semver-compatible and you should upgrade it.

Options

	–all (-a): Show all packages, not just outdated (alias for composer show -l).

	–direct (-D): Restricts the list of packages to your direct dependencies.

	–strict: Returns non-zero exit code if any package is outdated.

	–minor-only (-m): Only shows packages that have minor SemVer-compatible updates.

	–format (-f): Lets you pick between text (default) or json output format.

browse / home

The browse (aliased to home) opens a package’s repository URL or homepage
in your browser.

Options

	–homepage (-H): Open the homepage instead of the repository URL.

	–show (-s): Only show the homepage or repository URL.

suggests

Lists all packages suggested by currently installed set of packages. You can
optionally pass one or multiple package names in the format of vendor/package
to limit output to suggestions made by those packages only.

Use the --by-package or --by-suggestion flags to group the output by
the package offering the suggestions or the suggested packages respectively.

Use the --verbose (-v) flag to display the suggesting package and the suggestion reason.
This implies --by-package --by-suggestion, showing both lists.

Options

	–by-package: Groups output by suggesting package.

	–by-suggestion: Groups output by suggested package.

	–no-dev: Excludes suggestions from require-dev packages.

depends (why)

The depends command tells you which other packages depend on a certain
package. As with installation require-dev relationships are only considered
for the root package.

php composer.phar depends doctrine/lexer
 doctrine/annotations v1.2.7 requires doctrine/lexer (1.*)
 doctrine/common v2.6.1 requires doctrine/lexer (1.*)

You can optionally specify a version constraint after the package to limit the
search.

Add the --tree or -t flag to show a recursive tree of why the package is
depended upon, for example:

php composer.phar depends psr/log -t
psr/log 1.0.0 Common interface for logging libraries
|- aboutyou/app-sdk 2.6.11 (requires psr/log 1.0.*)
| `- __root__ (requires aboutyou/app-sdk ^2.6)
|- monolog/monolog 1.17.2 (requires psr/log ~1.0)
| `- laravel/framework v5.2.16 (requires monolog/monolog ~1.11)
| `- __root__ (requires laravel/framework ^5.2)
`- symfony/symfony v3.0.2 (requires psr/log ~1.0)
 `- __root__ (requires symfony/symfony ^3.0)

Options

	–recursive (-r): Recursively resolves up to the root package.

	–tree (-t): Prints the results as a nested tree, implies -r.

prohibits (why-not)

The prohibits command tells you which packages are blocking a given package
from being installed. Specify a version constraint to verify whether upgrades
can be performed in your project, and if not why not. See the following
example:

php composer.phar prohibits symfony/symfony 3.1
 laravel/framework v5.2.16 requires symfony/var-dumper (2.8.*|3.0.*)

Note that you can also specify platform requirements, for example to check
whether you can upgrade your server to PHP 8.0:

php composer.phar prohibits php:8
 doctrine/cache v1.6.0 requires php (~5.5|~7.0)
 doctrine/common v2.6.1 requires php (~5.5|~7.0)
 doctrine/instantiator 1.0.5 requires php (>=5.3,<8.0-DEV)

As with depends you can request a recursive lookup, which will list all
packages depending on the packages that cause the conflict.

Options

	–recursive (-r): Recursively resolves up to the root package.

	–tree (-t): Prints the results as a nested tree, implies -r.

validate

You should always run the validate command before you commit your
composer.json file, and before you tag a release. It will check if your
composer.json is valid.

php composer.phar validate

Options

	–no-check-all: Do not emit a warning if requirements in composer.json use unbound or overly strict version constraints.

	–no-check-lock: Do not emit an error if composer.lock exists and is not up to date.

	–no-check-publish: Do not emit an error if composer.json is unsuitable for publishing as a package on Packagist but is otherwise valid.

	–with-dependencies: Also validate the composer.json of all installed dependencies.

	–strict: Return a non-zero exit code for warnings as well as errors.

status

If you often need to modify the code of your dependencies and they are
installed from source, the status command allows you to check if you have
local changes in any of them.

php composer.phar status

With the --verbose option you get some more information about what was
changed:

php composer.phar status -v

You have changes in the following dependencies:
vendor/seld/jsonlint:
 M README.mdown

self-update (selfupdate)

To update Composer itself to the latest version, run the self-update
command. It will replace your composer.phar with the latest version.

php composer.phar self-update

If you would like to instead update to a specific release simply specify it:

php composer.phar self-update 1.0.0-alpha7

If you have installed Composer for your entire system (see global installation),
you may have to run the command with root privileges

sudo -H composer self-update

Options

	–rollback (-r): Rollback to the last version you had installed.

	–clean-backups: Delete old backups during an update. This makes the
current version of Composer the only backup available after the update.

	–no-progress: Do not output download progress.

	–update-keys: Prompt user for a key update.

	–stable: Force an update to the stable channel.

	–preview: Force an update to the preview channel.

	–snapshot: Force an update to the snapshot channel.

config

The config command allows you to edit composer config settings and repositories
in either the local composer.json file or the global config.json file.

Additionally it lets you edit most properties in the local composer.json.

php composer.phar config --list

Usage

config [options] [setting-key] [setting-value1] ... [setting-valueN]

setting-key is a configuration option name and setting-value1 is a
configuration value. For settings that can take an array of values (like
github-protocols), more than one setting-value arguments are allowed.

You can also edit the values of the following properties:

description, homepage, keywords, license, minimum-stability,
name, prefer-stable, type and version.

See the Config chapter for valid configuration options.

Options

	–global (-g): Operate on the global config file located at
$COMPOSER_HOME/config.json by default. Without this option, this command
affects the local composer.json file or a file specified by --file.

	–editor (-e): Open the local composer.json file using in a text editor as
defined by the EDITOR env variable. With the --global option, this opens
the global config file.

	–auth (-a): Affect auth config file (only used for –editor).

	–unset: Remove the configuration element named by setting-key.

	–list (-l): Show the list of current config variables. With the --global
option this lists the global configuration only.

	–file=”…” (-f): Operate on a specific file instead of composer.json. Note
that this cannot be used in conjunction with the --global option.

	–absolute: Returns absolute paths when fetching *-dir config values
instead of relative.

Modifying Repositories

In addition to modifying the config section, the config command also supports making
changes to the repositories section by using it the following way:

php composer.phar config repositories.foo vcs https://github.com/foo/bar

If your repository requires more configuration options, you can instead pass its JSON representation :

php composer.phar config repositories.foo '{"type": "vcs", "url": "http://svn.example.org/my-project/", "trunk-path": "master"}'

Modifying Extra Values

In addition to modifying the config section, the config command also supports making
changes to the extra section by using it the following way:

php composer.phar config extra.foo.bar value

The dots indicate array nesting, a max depth of 3 levels is allowed though. The above
would set "extra": { "foo": { "bar": "value" } }.

create-project

You can use Composer to create new projects from an existing package. This is
the equivalent of doing a git clone/svn checkout followed by a composer install
of the vendors.

There are several applications for this:

	You can deploy application packages.

	You can check out any package and start developing on patches for example.

	Projects with multiple developers can use this feature to bootstrap the
initial application for development.

To create a new project using Composer you can use the create-project command.
Pass it a package name, and the directory to create the project in. You can also
provide a version as third argument, otherwise the latest version is used.

If the directory does not currently exist, it will be created during installation.

php composer.phar create-project doctrine/orm path 2.2.*

It is also possible to run the command without params in a directory with an
existing composer.json file to bootstrap a project.

By default the command checks for the packages on packagist.org.

Options

	–stability (-s): Minimum stability of package. Defaults to stable.

	–prefer-source: Install packages from source when available.

	–prefer-dist: Install packages from dist when available.

	–repository: Provide a custom repository to search for the package,
which will be used instead of packagist. Can be either an HTTP URL pointing
to a composer repository, a path to a local packages.json file, or a
JSON string which similar to what the repositories
key accepts.

	–dev: Install packages listed in require-dev.

	–no-dev: Disables installation of require-dev packages.

	–no-scripts: Disables the execution of the scripts defined in the root
package.

	–no-progress: Removes the progress display that can mess with some
terminals or scripts which don’t handle backspace characters.

	–no-secure-http: Disable the secure-http config option temporarily while
installing the root package. Use at your own risk. Using this flag is a bad
idea.

	–keep-vcs: Skip the deletion of the VCS metadata for the created
project. This is mostly useful if you run the command in non-interactive
mode.

	–remove-vcs: Force-remove the VCS metadata without prompting.

	–no-install: Disables installation of the vendors.

	–ignore-platform-reqs: ignore php, hhvm, lib-* and ext-*
requirements and force the installation even if the local machine does not
fulfill these.

dump-autoload (dumpautoload)

If you need to update the autoloader because of new classes in a classmap
package for example, you can use dump-autoload to do that without having to
go through an install or update.

Additionally, it can dump an optimized autoloader that converts PSR-0/4 packages
into classmap ones for performance reasons. In large applications with many
classes, the autoloader can take up a substantial portion of every request’s
time. Using classmaps for everything is less convenient in development, but
using this option you can still use PSR-0/4 for convenience and classmaps for
performance.

Options

	–no-scripts: Skips the execution of all scripts defined in composer.json file.

	–optimize (-o): Convert PSR-0/4 autoloading to classmap to get a faster
autoloader. This is recommended especially for production, but can take
a bit of time to run so it is currently not done by default.

	–classmap-authoritative (-a): Autoload classes from the classmap only.
Implicitly enables --optimize.

	–apcu: Use APCu to cache found/not-found classes.

	–no-dev: Disables autoload-dev rules.

clear-cache (clearcache)

Deletes all content from Composer’s cache directories.

licenses

Lists the name, version and license of every package installed. Use
--format=json to get machine readable output.

Options

	–format: Format of the output: text or json (default: “text”)

	–no-dev: Remove dev dependencies from the output

run-script

Options

	–timeout: Set the script timeout in seconds, or 0 for no timeout.

	–dev: Sets the dev mode.

	–no-dev: Disable dev mode.

	–list (-l): List user defined scripts.

To run scripts manually you can use this command,
give it the script name and optionally any required arguments.

exec

Executes a vendored binary/script. You can execute any command and this will
ensure that the Composer bin-dir is pushed on your PATH before the command
runs.

Options

	–list (-l): List the available composer binaries.

diagnose

If you think you found a bug, or something is behaving strangely, you might
want to run the diagnose command to perform automated checks for many common
problems.

php composer.phar diagnose

archive

This command is used to generate a zip/tar archive for a given package in a
given version. It can also be used to archive your entire project without
excluded/ignored files.

php composer.phar archive vendor/package 2.0.21 --format=zip

Options

	–format (-f): Format of the resulting archive: tar or zip (default:
“tar”)

	–dir: Write the archive to this directory (default: “.”)

	–file: Write the archive with the given file name.

help

To get more information about a certain command, you can use help.

php composer.phar help install

Command-line completion

Command-line completion can be enabled by following instructions
on this page [https://github.com/bamarni/symfony-console-autocomplete].

Environment variables

You can set a number of environment variables that override certain settings.
Whenever possible it is recommended to specify these settings in the config
section of composer.json instead. It is worth noting that the env vars will
always take precedence over the values specified in composer.json.

COMPOSER

By setting the COMPOSER env variable it is possible to set the filename of
composer.json to something else.

For example:

COMPOSER=composer-other.json php composer.phar install

The generated lock file will use the same name: composer-other.lock in this example.

COMPOSER_ALLOW_SUPERUSER

If set to 1, this env disables the warning about running commands as root/super user.
It also disables automatic clearing of sudo sessions, so you should really only set this
if you use Composer as super user at all times like in docker containers.

COMPOSER_AUTH

The COMPOSER_AUTH var allows you to set up authentication as an environment variable.
The contents of the variable should be a JSON formatted object containing http-basic,
github-oauth, bitbucket-oauth, … objects as needed, and following the
spec from the config.

COMPOSER_BIN_DIR

By setting this option you can change the bin (Vendor Binaries)
directory to something other than vendor/bin.

COMPOSER_CACHE_DIR

The COMPOSER_CACHE_DIR var allows you to change the Composer cache directory,
which is also configurable via the cache-dir option.

By default it points to $COMPOSER_HOME/cache on *nix and macOS, and
C:\Users\<user>\AppData\Local\Composer (or %LOCALAPPDATA%/Composer) on Windows.

COMPOSER_CAFILE

By setting this environmental value, you can set a path to a certificate bundle
file to be used during SSL/TLS peer verification.

COMPOSER_DISCARD_CHANGES

This env var controls the discard-changes config option.

COMPOSER_HOME

The COMPOSER_HOME var allows you to change the Composer home directory. This
is a hidden, global (per-user on the machine) directory that is shared between
all projects.

By default it points to C:\Users\<user>\AppData\Roaming\Composer on Windows
and /Users/<user>/.composer on macOS. On *nix systems that follow the XDG Base
Directory Specifications [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html],
it points to $XDG_CONFIG_HOME/composer. On other *nix systems, it points to
/home/<user>/.composer.

COMPOSER_HOME/config.json

You may put a config.json file into the location which COMPOSER_HOME points
to. Composer will merge this configuration with your project’s composer.json
when you run the install and update commands.

This file allows you to set repositories and
configuration for the user’s projects.

In case global configuration matches local configuration, the local
configuration in the project’s composer.json always wins.

COMPOSER_HTACCESS_PROTECT

Defaults to 1. If set to 0, Composer will not create .htaccess files in the
composer home, cache, and data directories.

COMPOSER_MEMORY_LIMIT

If set, the value is used as php’s memory_limit.

COMPOSER_MIRROR_PATH_REPOS

If set to 1, this env changes the default path repository strategy to mirror instead
of symlink. As it is the default strategy being set it can still be overwritten by
repository options.

COMPOSER_NO_INTERACTION

If set to 1, this env var will make Composer behave as if you passed the
--no-interaction flag to every command. This can be set on build boxes/CI.

COMPOSER_PROCESS_TIMEOUT

This env var controls the time Composer waits for commands (such as git
commands) to finish executing. The default value is 300 seconds (5 minutes).

COMPOSER_ROOT_VERSION

By setting this var you can specify the version of the root package, if it can
not be guessed from VCS info and is not present in composer.json.

COMPOSER_VENDOR_DIR

By setting this var you can make Composer install the dependencies into a
directory other than vendor.

http_proxy or HTTP_PROXY

If you are using Composer from behind an HTTP proxy, you can use the standard
http_proxy or HTTP_PROXY env vars. Simply set it to the URL of your proxy.
Many operating systems already set this variable for you.

Using http_proxy (lowercased) or even defining both might be preferable since
some tools like git or curl will only use the lower-cased http_proxy version.
Alternatively you can also define the git proxy using
git config --global http.proxy <proxy url>.

If you are using Composer in a non-CLI context (i.e. integration into a CMS or
similar use case), and need to support proxies, please provide the CGI_HTTP_PROXY
environment variable instead. See httpoxy.org [https://httpoxy.org/] for further
details.

HTTP_PROXY_REQUEST_FULLURI

If you use a proxy but it does not support the request_fulluri flag, then you
should set this env var to false or 0 to prevent Composer from setting the
request_fulluri option.

HTTPS_PROXY_REQUEST_FULLURI

If you use a proxy but it does not support the request_fulluri flag for HTTPS
requests, then you should set this env var to false or 0 to prevent Composer
from setting the request_fulluri option.

COMPOSER_SELF_UPDATE_TARGET

If set, makes the self-update command write the new Composer phar file into that path instead of overwriting itself. Useful for updating Composer on read-only filesystem.

no_proxy or NO_PROXY

If you are behind a proxy and would like to disable it for certain domains, you
can use the no_proxy or NO_PROXY env var. Simply set it to a comma separated list of
domains the proxy should not be used for.

The env var accepts domains, IP addresses, and IP address blocks in CIDR
notation. You can restrict the filter to a particular port (e.g. :80). You
can also set it to * to ignore the proxy for all HTTP requests.

← Libraries | Schema →

The composer.json Schema

This chapter will explain all of the fields available in composer.json.

JSON schema

We have a JSON schema [http://json-schema.org] that documents the format and
can also be used to validate your composer.json. In fact, it is used by the
validate command. You can find it at: https://getcomposer.org/schema.json

Root Package

The root package is the package defined by the composer.json at the root of
your project. It is the main composer.json that defines your project
requirements.

Certain fields only apply when in the root package context. One example of
this is the config field. Only the root package can define configuration.
The config of dependencies is ignored. This makes the config field
root-only.

Note: A package can be the root package or not, depending on the context.
For example, if your project depends on the monolog library, your project
is the root package. However, if you clone monolog from GitHub in order to
fix a bug in it, then monolog is the root package.

Properties

name

The name of the package. It consists of vendor name and project name,
separated by /. Examples:

	monolog/monolog

	igorw/event-source

The name can contain any character, including white spaces, and it’s case
insensitive (foo/bar and Foo/Bar are considered the same package). In order
to simplify its installation, it’s recommended to define a short and lowercase
name that doesn’t include non-alphanumeric characters or white spaces.

Required for published packages (libraries).

description

A short description of the package. Usually this is one line long.

Required for published packages (libraries).

version

The version of the package. In most cases this is not required and should
be omitted (see below).

This must follow the format of X.Y.Z or vX.Y.Z with an optional suffix
of -dev, -patch (-p), -alpha (-a), -beta (-b) or -RC.
The patch, alpha, beta and RC suffixes can also be followed by a number.

Examples:

	1.0.0

	1.0.2

	1.1.0

	0.2.5

	1.0.0-dev

	1.0.0-alpha3

	1.0.0-beta2

	1.0.0-RC5

	v2.0.4-p1

Optional if the package repository can infer the version from somewhere, such
as the VCS tag name in the VCS repository. In that case it is also recommended
to omit it.

Note: Packagist uses VCS repositories, so the statement above is very
much true for Packagist as well. Specifying the version yourself will
most likely end up creating problems at some point due to human error.

type

The type of the package. It defaults to library.

Package types are used for custom installation logic. If you have a package
that needs some special logic, you can define a custom type. This could be a
symfony-bundle, a wordpress-plugin or a typo3-cms-extension. These types
will all be specific to certain projects, and they will need to provide an
installer capable of installing packages of that type.

Out of the box, Composer supports four types:

	library: This is the default. It will simply copy the files to vendor.

	project: This denotes a project rather than a library. For example
application shells like the Symfony standard edition [https://github.com/symfony/symfony-standard],
CMSs like the SilverStripe installer [https://github.com/silverstripe/silverstripe-installer]
or full fledged applications distributed as packages. This can for example
be used by IDEs to provide listings of projects to initialize when creating
a new workspace.

	metapackage: An empty package that contains requirements and will trigger
their installation, but contains no files and will not write anything to the
filesystem. As such, it does not require a dist or source key to be
installable.

	composer-plugin: A package of type composer-plugin may provide an
installer for other packages that have a custom type. Read more in the
dedicated article.

Only use a custom type if you need custom logic during installation. It is
recommended to omit this field and have it default to library.

keywords

An array of keywords that the package is related to. These can be used for
searching and filtering.

Examples:

	logging

	events

	database

	redis

	templating

Optional.

homepage

An URL to the website of the project.

Optional.

readme

A relative path to the readme document.

Optional.

time

Release date of the version.

Must be in YYYY-MM-DD or YYYY-MM-DD HH:MM:SS format.

Optional.

license

The license of the package. This can be either a string or an array of strings.

The recommended notation for the most common licenses is (alphabetical):

	Apache-2.0

	BSD-2-Clause

	BSD-3-Clause

	BSD-4-Clause

	GPL-2.0-only / GPL-2.0-or-later

	GPL-3.0-only / GPL-3.0-or-later

	LGPL-2.1-only / LGPL-2.1-or-later

	LGPL-3.0-only / LGPL-3.0-or-later

	MIT

Optional, but it is highly recommended to supply this. More identifiers are
listed at the SPDX Open Source License Registry [https://spdx.org/licenses/].

For closed-source software, you may use "proprietary" as the license identifier.

An Example:

{
 "license": "MIT"
}

For a package, when there is a choice between licenses (“disjunctive license”),
multiple can be specified as array.

An Example for disjunctive licenses:

{
 "license": [
 "LGPL-2.1-only",
 "GPL-3.0-or-later"
]
}

Alternatively they can be separated with “or” and enclosed in parenthesis;

{
 "license": "(LGPL-2.1-only or GPL-3.0-or-later)"
}

Similarly when multiple licenses need to be applied (“conjunctive license”),
they should be separated with “and” and enclosed in parenthesis.

authors

The authors of the package. This is an array of objects.

Each author object can have following properties:

	name: The author’s name. Usually their real name.

	email: The author’s email address.

	homepage: An URL to the author’s website.

	role: The author’s role in the project (e.g. developer or translator)

An example:

{
 "authors": [
 {
 "name": "Nils Adermann",
 "email": "naderman@naderman.de",
 "homepage": "http://www.naderman.de",
 "role": "Developer"
 },
 {
 "name": "Jordi Boggiano",
 "email": "j.boggiano@seld.be",
 "homepage": "https://seld.be",
 "role": "Developer"
 }
]
}

Optional, but highly recommended.

support

Various information to get support about the project.

Support information includes the following:

	email: Email address for support.

	issues: URL to the issue tracker.

	forum: URL to the forum.

	wiki: URL to the wiki.

	irc: IRC channel for support, as irc://server/channel.

	source: URL to browse or download the sources.

	docs: URL to the documentation.

	rss: URL to the RSS feed.

	chat: URL to the chat channel.

An example:

{
 "support": {
 "email": "support@example.org",
 "irc": "irc://irc.freenode.org/composer"
 }
}

Optional.

Package links

All of the following take an object which maps package names to
versions of the package via version constraints. Read more about
versions here.

Example:

{
 "require": {
 "monolog/monolog": "1.0.*"
 }
}

All links are optional fields.

require and require-dev additionally support stability flags (root-only).
These allow you to further restrict or expand the stability of a package beyond
the scope of the minimum-stability setting. You can apply
them to a constraint, or apply them to an empty constraint if you want to
allow unstable packages of a dependency for example.

Example:

{
 "require": {
 "monolog/monolog": "1.0.*@beta",
 "acme/foo": "@dev"
 }
}

If one of your dependencies has a dependency on an unstable package you need to
explicitly require it as well, along with its sufficient stability flag.

Example:

Assuming doctrine/doctrine-fixtures-bundle requires "doctrine/data-fixtures": "dev-master"
then inside the root composer.json you need to add the second line below to allow dev
releases for the doctrine/data-fixtures package :

{
 "require": {
 "doctrine/doctrine-fixtures-bundle": "dev-master",
 "doctrine/data-fixtures": "@dev"
 }
}

require and require-dev additionally support explicit references (i.e.
commit) for dev versions to make sure they are locked to a given state, even
when you run update. These only work if you explicitly require a dev version
and append the reference with #<ref>. This is also a
root-only feature and will be ignored in
dependencies.

Example:

{
 "require": {
 "monolog/monolog": "dev-master#2eb0c0978d290a1c45346a1955188929cb4e5db7",
 "acme/foo": "1.0.x-dev#abc123"
 }
}

Note: This feature has severe technical limitations, as the
composer.json metadata will still be read from the branch name you specify
before the hash. You should therefore only use this as a temporary solution
during development to remediate transient issues, until you can switch to
tagged releases. The Composer team does not actively support this feature
and will not accept bug reports related to it.

It is also possible to inline-alias a package constraint so that it matches
a constraint that it otherwise would not. For more information see the
aliases article.

require and require-dev also support references to specific PHP versions
and PHP extensions your project needs to run successfully.

Example:

{
 "require" : {
 "php" : "^5.5 || ^7.0",
 "ext-mbstring": "*"
 }
}

Note: It is important to list PHP extensions your project requires.
Not all PHP installations are created equal: some may miss extensions you
may consider as standard (such as ext-mysqli which is not installed by
default in Fedora/CentOS minimal installation systems). Failure to list
required PHP extensions may lead to a bad user experience: Composer will
install your package without any errors but it will then fail at run-time.
The composer show --platform command lists all PHP extensions available on
your system. You may use it to help you compile the list of extensions you
use and require. Alternatively you may use third party tools to analyze
your project for the list of extensions used.

require

Lists packages required by this package. The package will not be installed
unless those requirements can be met.

require-dev (root-only)

Lists packages required for developing this package, or running
tests, etc. The dev requirements of the root package are installed by default.
Both install or update support the --no-dev option that prevents dev
dependencies from being installed.

conflict

Lists packages that conflict with this version of this package. They
will not be allowed to be installed together with your package.

Note that when specifying ranges like <1.0 >=1.1 in a conflict link,
this will state a conflict with all versions that are less than 1.0 and equal
or newer than 1.1 at the same time, which is probably not what you want. You
probably want to go for <1.0 || >=1.1 in this case.

replace

Lists packages that are replaced by this package. This allows you to fork a
package, publish it under a different name with its own version numbers, while
packages requiring the original package continue to work with your fork because
it replaces the original package.

This is also useful for packages that contain sub-packages, for example the main
symfony/symfony package contains all the Symfony Components which are also
available as individual packages. If you require the main package it will
automatically fulfill any requirement of one of the individual components,
since it replaces them.

Caution is advised when using replace for the sub-package purpose explained
above. You should then typically only replace using self.version as a version
constraint, to make sure the main package only replaces the sub-packages of
that exact version, and not any other version, which would be incorrect.

provide

List of other packages that are provided by this package. This is mostly
useful for common interfaces. A package could depend on some virtual
logger package, any library that implements this logger interface would
simply list it in provide.

suggest

Suggested packages that can enhance or work well with this package. These are
informational and are displayed after the package is installed, to give
your users a hint that they could add more packages, even though they are not
strictly required.

The format is like package links above, except that the values are free text
and not version constraints.

Example:

{
 "suggest": {
 "monolog/monolog": "Allows more advanced logging of the application flow",
 "ext-xml": "Needed to support XML format in class Foo"
 }
}

autoload

Autoload mapping for a PHP autoloader.

PSR-4 [http://www.php-fig.org/psr/psr-4/] and PSR-0 [http://www.php-fig.org/psr/psr-0/]
autoloading, classmap generation and files includes are supported.

PSR-4 is the recommended way since it offers greater ease of use (no need
to regenerate the autoloader when you add classes).

PSR-4

Under the psr-4 key you define a mapping from namespaces to paths, relative to the
package root. When autoloading a class like Foo\\Bar\\Baz a namespace prefix
Foo\\ pointing to a directory src/ means that the autoloader will look for a
file named src/Bar/Baz.php and include it if present. Note that as opposed to
the older PSR-0 style, the prefix (Foo\\) is not present in the file path.

Namespace prefixes must end in \\ to avoid conflicts between similar prefixes.
For example Foo would match classes in the FooBar namespace so the trailing
backslashes solve the problem: Foo\\ and FooBar\\ are distinct.

The PSR-4 references are all combined, during install/update, into a single
key => value array which may be found in the generated file
vendor/composer/autoload_psr4.php.

Example:

{
 "autoload": {
 "psr-4": {
 "Monolog\\": "src/",
 "Vendor\\Namespace\\": ""
 }
 }
}

If you need to search for a same prefix in multiple directories,
you can specify them as an array as such:

{
 "autoload": {
 "psr-4": { "Monolog\\": ["src/", "lib/"] }
 }
}

If you want to have a fallback directory where any namespace will be looked for,
you can use an empty prefix like:

{
 "autoload": {
 "psr-4": { "": "src/" }
 }
}

PSR-0

Under the psr-0 key you define a mapping from namespaces to paths, relative to the
package root. Note that this also supports the PEAR-style non-namespaced convention.

Please note namespace declarations should end in \\ to make sure the autoloader
responds exactly. For example Foo would match in FooBar so the trailing
backslashes solve the problem: Foo\\ and FooBar\\ are distinct.

The PSR-0 references are all combined, during install/update, into a single key => value
array which may be found in the generated file vendor/composer/autoload_namespaces.php.

Example:

{
 "autoload": {
 "psr-0": {
 "Monolog\\": "src/",
 "Vendor\\Namespace\\": "src/",
 "Vendor_Namespace_": "src/"
 }
 }
}

If you need to search for a same prefix in multiple directories,
you can specify them as an array as such:

{
 "autoload": {
 "psr-0": { "Monolog\\": ["src/", "lib/"] }
 }
}

The PSR-0 style is not limited to namespace declarations only but may be
specified right down to the class level. This can be useful for libraries with
only one class in the global namespace. If the php source file is also located
in the root of the package, for example, it may be declared like this:

{
 "autoload": {
 "psr-0": { "UniqueGlobalClass": "" }
 }
}

If you want to have a fallback directory where any namespace can be, you can
use an empty prefix like:

{
 "autoload": {
 "psr-0": { "": "src/" }
 }
}

Classmap

The classmap references are all combined, during install/update, into a single
key => value array which may be found in the generated file
vendor/composer/autoload_classmap.php. This map is built by scanning for
classes in all .php and .inc files in the given directories/files.

You can use the classmap generation support to define autoloading for all libraries
that do not follow PSR-0/4. To configure this you specify all directories or files
to search for classes.

Example:

{
 "autoload": {
 "classmap": ["src/", "lib/", "Something.php"]
 }
}

Files

If you want to require certain files explicitly on every request then you can use
the files autoloading mechanism. This is useful if your package includes PHP functions
that cannot be autoloaded by PHP.

Example:

{
 "autoload": {
 "files": ["src/MyLibrary/functions.php"]
 }
}

Exclude files from classmaps

If you want to exclude some files or folders from the classmap you can use the exclude-from-classmap property.
This might be useful to exclude test classes in your live environment, for example, as those will be skipped
from the classmap even when building an optimized autoloader.

The classmap generator will ignore all files in the paths configured here. The paths are absolute from the package
root directory (i.e. composer.json location), and support * to match anything but a slash, and ** to
match anything. ** is implicitly added to the end of the paths.

Example:

{
 "autoload": {
 "exclude-from-classmap": ["/Tests/", "/test/", "/tests/"]
 }
}

Optimizing the autoloader

The autoloader can have quite a substantial impact on your request time
(50-100ms per request in large frameworks using a lot of classes). See the
article about optimizing the autoloader
for more details on how to reduce this impact.

autoload-dev (root-only)

This section allows to define autoload rules for development purposes.

Classes needed to run the test suite should not be included in the main autoload
rules to avoid polluting the autoloader in production and when other people use
your package as a dependency.

Therefore, it is a good idea to rely on a dedicated path for your unit tests
and to add it within the autoload-dev section.

Example:

{
 "autoload": {
 "psr-4": { "MyLibrary\\": "src/" }
 },
 "autoload-dev": {
 "psr-4": { "MyLibrary\\Tests\\": "tests/" }
 }
}

include-path

DEPRECATED: This is only present to support legacy projects, and all new code
should preferably use autoloading. As such it is a deprecated practice, but the
feature itself will not likely disappear from Composer.

A list of paths which should get appended to PHP’s include_path.

Example:

{
 "include-path": ["lib/"]
}

Optional.

target-dir

DEPRECATED: This is only present to support legacy PSR-0 style autoloading,
and all new code should preferably use PSR-4 without target-dir and projects
using PSR-0 with PHP namespaces are encouraged to migrate to PSR-4 instead.

Defines the installation target.

In case the package root is below the namespace declaration you cannot
autoload properly. target-dir solves this problem.

An example is Symfony. There are individual packages for the components. The
Yaml component is under Symfony\Component\Yaml. The package root is that
Yaml directory. To make autoloading possible, we need to make sure that it
is not installed into vendor/symfony/yaml, but instead into
vendor/symfony/yaml/Symfony/Component/Yaml, so that the autoloader can load
it from vendor/symfony/yaml.

To do that, autoload and target-dir are defined as follows:

{
 "autoload": {
 "psr-0": { "Symfony\\Component\\Yaml\\": "" }
 },
 "target-dir": "Symfony/Component/Yaml"
}

Optional.

minimum-stability (root-only)

This defines the default behavior for filtering packages by stability. This
defaults to stable, so if you rely on a dev package, you should specify
it in your file to avoid surprises.

All versions of each package are checked for stability, and those that are less
stable than the minimum-stability setting will be ignored when resolving
your project dependencies. (Note that you can also specify stability requirements
on a per-package basis using stability flags in the version constraints that you
specify in a require block (see package links for more details).

Available options (in order of stability) are dev, alpha, beta, RC,
and stable.

prefer-stable (root-only)

When this is enabled, Composer will prefer more stable packages over unstable
ones when finding compatible stable packages is possible. If you require a
dev version or only alphas are available for a package, those will still be
selected granted that the minimum-stability allows for it.

Use "prefer-stable": true to enable.

repositories (root-only)

Custom package repositories to use.

By default Composer only uses the packagist repository. By specifying
repositories you can get packages from elsewhere.

Repositories are not resolved recursively. You can only add them to your main
composer.json. Repository declarations of dependencies’ composer.jsons are
ignored.

The following repository types are supported:

	composer: A Composer repository is simply a packages.json file served
via the network (HTTP, FTP, SSH), that contains a list of composer.json
objects with additional dist and/or source information. The packages.json
file is loaded using a PHP stream. You can set extra options on that stream
using the options parameter.

	vcs: The version control system repository can fetch packages from git,
svn, fossil and hg repositories.

	pear: With this you can import any pear repository into your Composer
project.

	package: If you depend on a project that does not have any support for
composer whatsoever you can define the package inline using a package
repository. You basically inline the composer.json object.

For more information on any of these, see Repositories.

Example:

{
 "repositories": [
 {
 "type": "composer",
 "url": "http://packages.example.com"
 },
 {
 "type": "composer",
 "url": "https://packages.example.com",
 "options": {
 "ssl": {
 "verify_peer": "true"
 }
 }
 },
 {
 "type": "vcs",
 "url": "https://github.com/Seldaek/monolog"
 },
 {
 "type": "pear",
 "url": "https://pear2.php.net"
 },
 {
 "type": "package",
 "package": {
 "name": "smarty/smarty",
 "version": "3.1.7",
 "dist": {
 "url": "https://www.smarty.net/files/Smarty-3.1.7.zip",
 "type": "zip"
 },
 "source": {
 "url": "https://smarty-php.googlecode.com/svn/",
 "type": "svn",
 "reference": "tags/Smarty_3_1_7/distribution/"
 }
 }
 }
]
}

Note: Order is significant here. When looking for a package, Composer
will look from the first to the last repository, and pick the first match.
By default Packagist is added last which means that custom repositories can
override packages from it.

Using JSON object notation is also possible. However, JSON key/value pairs
are to be considered unordered so consistent behaviour cannot be guaranteed.

{
 "repositories": {
 "foo": {
 "type": "composer",
 "url": "http://packages.foo.com"
 }
 }
}

config (root-only)

A set of configuration options. It is only used for projects. See
Config for a description of each individual option.

scripts (root-only)

Composer allows you to hook into various parts of the installation process
through the use of scripts.

See Scripts for events details and examples.

extra

Arbitrary extra data for consumption by scripts.

This can be virtually anything. To access it from within a script event
handler, you can do:

$extra = $event->getComposer()->getPackage()->getExtra();

Optional.

bin

A set of files that should be treated as binaries and symlinked into the bin-dir
(from config).

See Vendor Binaries for more details.

Optional.

archive

A set of options for creating package archives.

The following options are supported:

	exclude: Allows configuring a list of patterns for excluded paths. The
pattern syntax matches .gitignore files. A leading exclamation mark (!) will
result in any matching files to be included even if a previous pattern
excluded them. A leading slash will only match at the beginning of the project
relative path. An asterisk will not expand to a directory separator.

Example:

{
 "archive": {
 "exclude": ["/foo/bar", "baz", "/*.test", "!/foo/bar/baz"]
 }
}

The example will include /dir/foo/bar/file, /foo/bar/baz, /file.php,
/foo/my.test but it will exclude /foo/bar/any, /foo/baz, and /my.test.

Optional.

abandoned

Indicates whether this package has been abandoned.

It can be boolean or a package name/URL pointing to a recommended alternative.

Examples:

Use "abandoned": true to indicates this package is abandoned.
Use "abandoned": "monolog/monolog" to indicates this package is abandoned and the
recommended alternative is monolog/monolog.

Defaults to false.

Optional.

non-feature-branches

A list of regex patterns of branch names that are non-numeric (e.g. “latest” or something),
that will NOT be handled as feature branches. This is an array of strings.

If you have non-numeric branch names, for example like “latest”, “current”, “latest-stable”
or something, that do not look like a version number, then Composer handles such branches
as feature branches. This means it searches for parent branches, that look like a version
or ends at special branches (like master) and the root package version number becomes the
version of the parent branch or at least master or something.

To handle non-numeric named branches as versions instead of searching for a parent branch
with a valid version or special branch name like master, you can set patterns for branch
names, that should be handled as dev version branches.

This is really helpful when you have dependencies using “self.version”, so that not dev-master,
but the same branch is installed (in the example: latest-testing).

An example:

If you have a testing branch, that is heavily maintained during a testing phase and is
deployed to your staging environment, normally composer show -s will give you versions : * dev-master.

If you configure latest-.* as a pattern for non-feature-branches like this:

{
 "non-feature-branches": ["latest-.*"]
}

Then composer show -s will give you versions : * dev-latest-testing.

Optional.

← Command-line interface | Repositories →

Repositories

This chapter will explain the concept of packages and repositories, what kinds
of repositories are available, and how they work.

Concepts

Before we look at the different types of repositories that exist, we need to
understand some of the basic concepts that Composer is built on.

Package

Composer is a dependency manager. It installs packages locally. A package is
essentially a directory containing something. In this case it is PHP
code, but in theory it could be anything. And it contains a package
description which has a name and a version. The name and the version are used
to identify the package.

In fact, internally Composer sees every version as a separate package. While
this distinction does not matter when you are using Composer, it’s quite
important when you want to change it.

In addition to the name and the version, there is useful metadata. The
information most relevant for installation is the source definition, which
describes where to get the package contents. The package data points to the
contents of the package. And there are two options here: dist and source.

Dist: The dist is a packaged version of the package data. Usually a
released version, usually a stable release.

Source: The source is used for development. This will usually originate
from a source code repository, such as git. You can fetch this when you want
to modify the downloaded package.

Packages can supply either of these, or even both. Depending on certain
factors, such as user-supplied options and stability of the package, one will
be preferred.

Repository

A repository is a package source. It’s a list of packages/versions. Composer
will look in all your repositories to find the packages your project requires.

By default only the Packagist repository is registered in Composer. You can
add more repositories to your project by declaring them in composer.json.

Repositories are only available to the root package and the repositories
defined in your dependencies will not be loaded. Read the
FAQ entry if you
want to learn why.

Types

Composer

The main repository type is the composer repository. It uses a single
packages.json file that contains all of the package metadata.

This is also the repository type that packagist uses. To reference a
composer repository, supply the path before the packages.json file.
In the case of packagist, that file is located at /packages.json, so the URL of
the repository would be repo.packagist.org. For example.org/packages.json the
repository URL would be example.org.

packages

The only required field is packages. The JSON structure is as follows:

{
 "packages": {
 "vendor/package-name": {
 "dev-master": { @composer.json },
 "1.0.x-dev": { @composer.json },
 "0.0.1": { @composer.json },
 "1.0.0": { @composer.json }
 }
 }
}

The @composer.json marker would be the contents of the composer.json from
that package version including as a minimum:

	name

	version

	dist or source

Here is a minimal package definition:

{
 "name": "smarty/smarty",
 "version": "3.1.7",
 "dist": {
 "url": "https://www.smarty.net/files/Smarty-3.1.7.zip",
 "type": "zip"
 }
}

It may include any of the other fields specified in the schema.

notify-batch

The notify-batch field allows you to specify a URL that will be called
every time a user installs a package. The URL can be either an absolute path
(that will use the same domain as the repository) or a fully qualified URL.

An example value:

{
 "notify-batch": "/downloads/"
}

For example.org/packages.json containing a monolog/monolog package, this
would send a POST request to example.org/downloads/ with following
JSON request body:

{
 "downloads": [
 {"name": "monolog/monolog", "version": "1.2.1.0"}
]
}

The version field will contain the normalized representation of the version
number.

This field is optional.

provider-includes and providers-url

The provider-includes field allows you to list a set of files that list
package names provided by this repository. The hash should be a sha256 of
the files in this case.

The providers-url describes how provider files are found on the server. It
is an absolute path from the repository root. It must contain the placeholders
%package% and %hash%.

An example:

{
 "provider-includes": {
 "providers-a.json": {
 "sha256": "f5b4bc0b354108ef08614e569c1ed01a2782e67641744864a74e788982886f4c"
 },
 "providers-b.json": {
 "sha256": "b38372163fac0573053536f5b8ef11b86f804ea8b016d239e706191203f6efac"
 }
 },
 "providers-url": "/p/%package%$%hash%.json"
}

Those files contain lists of package names and hashes to verify the file
integrity, for example:

{
 "providers": {
 "acme/foo": {
 "sha256": "38968de1305c2e17f4de33aea164515bc787c42c7e2d6e25948539a14268bb82"
 },
 "acme/bar": {
 "sha256": "4dd24c930bd6e1103251306d6336ac813b563a220d9ca14f4743c032fb047233"
 }
 }
}

The file above declares that acme/foo and acme/bar can be found in this
repository, by loading the file referenced by providers-url, replacing
%package% by the vendor namespaced package name and %hash% by the
sha256 field. Those files themselves contain package definitions as
described above.

These fields are optional. You probably don’t need them for your own custom
repository.

stream options

The packages.json file is loaded using a PHP stream. You can set extra
options on that stream using the options parameter. You can set any valid
PHP stream context option. See Context options and
parameters [https://php.net/manual/en/context.php] for more information.

VCS

VCS stands for version control system. This includes versioning systems like
git, svn, fossil or hg. Composer has a repository type for installing packages
from these systems.

Loading a package from a VCS repository

There are a few use cases for this. The most common one is maintaining your
own fork of a third party library. If you are using a certain library for your
project and you decide to change something in the library, you will want your
project to use the patched version. If the library is on GitHub (this is the
case most of the time), you can simply fork it there and push your changes to
your fork. After that you update the project’s composer.json. All you have
to do is add your fork as a repository and update the version constraint to
point to your custom branch. In composer.json, you should prefix your custom
branch name with "dev-". For version constraint naming conventions see
Libraries for more information.

Example assuming you patched monolog to fix a bug in the bugfix branch:

{
 "repositories": [
 {
 "type": "vcs",
 "url": "https://github.com/igorw/monolog"
 }
],
 "require": {
 "monolog/monolog": "dev-bugfix"
 }
}

When you run php composer.phar update, you should get your modified version
of monolog/monolog instead of the one from packagist.

Note that you should not rename the package unless you really intend to fork
it in the long term, and completely move away from the original package.
Composer will correctly pick your package over the original one since the
custom repository has priority over packagist. If you want to rename the
package, you should do so in the default (often master) branch and not in a
feature branch, since the package name is taken from the default branch.

Also note that the override will not work if you change the name property
in your forked repository’s composer.json file as this needs to match the
original for the override to work.

If other dependencies rely on the package you forked, it is possible to
inline-alias it so that it matches a constraint that it otherwise would not.
For more information see the aliases article.

Using private repositories

Exactly the same solution allows you to work with your private repositories at
GitHub and BitBucket:

{
 "require": {
 "vendor/my-private-repo": "dev-master"
 },
 "repositories": [
 {
 "type": "vcs",
 "url": "git@bitbucket.org:vendor/my-private-repo.git"
 }
]
}

The only requirement is the installation of SSH keys for a git client.

Git alternatives

Git is not the only version control system supported by the VCS repository.
The following are supported:

	Git: git-scm.com [https://git-scm.com]

	Subversion: subversion.apache.org [https://subversion.apache.org]

	Mercurial: mercurial-scm.org [https://www.mercurial-scm.org]

	Fossil: fossil-scm.org [https://www.fossil-scm.org/]

To get packages from these systems you need to have their respective clients
installed. That can be inconvenient. And for this reason there is special
support for GitHub and BitBucket that use the APIs provided by these sites, to
fetch the packages without having to install the version control system. The
VCS repository provides dists for them that fetch the packages as zips.

	GitHub: github.com [https://github.com] (Git)

	BitBucket: bitbucket.org [https://bitbucket.org] (Git and Mercurial)

The VCS driver to be used is detected automatically based on the URL. However,
should you need to specify one for whatever reason, you can use git-bitbucket,
hg-bitbucket, github, gitlab, perforce, fossil, git, svn or hg
as the repository type instead of vcs.

If you set the no-api key to true on a github repository it will clone the
repository as it would with any other git repository instead of using the
GitHub API. But unlike using the git driver directly, Composer will still
attempt to use github’s zip files.

Please note:

	To let Composer choose which driver to use the repository type needs to be defined as “vcs”

	If you already used a private repository, this means Composer should have cloned it in cache. If you want to install the same package with drivers, remember to launch the command composer clearcache followed by the command composer update to update composer cache and install the package from dist.

BitBucket Driver Configuration

The BitBucket driver uses OAuth to access your private repositories via the BitBucket REST APIs and you will need to create an OAuth consumer to use the driver, please refer to Atlassian’s Documentation [https://confluence.atlassian.com/bitbucket/oauth-on-bitbucket-cloud-238027431.html]. You will need to fill the callback url with something to satisfy BitBucket, but the address does not need to go anywhere and is not used by Composer.

After creating an OAuth consumer in the BitBucket control panel, you need to setup your auth.json file with
the credentials like this (more info here [https://getcomposer.org/doc/06-config.md#bitbucket-oauth]):

{
 "bitbucket-oauth": {
 "bitbucket.org": {
 "consumer-key": "myKey",
 "consumer-secret": "mySecret"
 }
 }
}

Note that the repository endpoint needs to be https rather than git.

Alternatively if you prefer not to have your OAuth credentials on your filesystem you may export the bitbucket-oauth block above to the COMPOSER_AUTH [https://getcomposer.org/doc/03-cli.md#composer-auth] environment variable instead.

Subversion Options

Since Subversion has no native concept of branches and tags, Composer assumes
by default that code is located in $url/trunk, $url/branches and
$url/tags. If your repository has a different layout you can change those
values. For example if you used capitalized names you could configure the
repository like this:

{
 "repositories": [
 {
 "type": "vcs",
 "url": "http://svn.example.org/projectA/",
 "trunk-path": "Trunk",
 "branches-path": "Branches",
 "tags-path": "Tags"
 }
]
}

If you have no branches or tags directory you can disable them entirely by
setting the branches-path or tags-path to false.

If the package is in a sub-directory, e.g. /trunk/foo/bar/composer.json and
/tags/1.0/foo/bar/composer.json, then you can make Composer access it by
setting the "package-path" option to the sub-directory, in this example it
would be "package-path": "foo/bar/".

If you have a private Subversion repository you can save credentials in the
http-basic section of your config (See Schema):

{
 "http-basic": {
 "svn.example.org": {
 "username": "username",
 "password": "password"
 }
 }
}

If your Subversion client is configured to store credentials by default these
credentials will be saved for the current user and existing saved credentials
for this server will be overwritten. To change this behavior by setting the
"svn-cache-credentials" option in your repository configuration:

{
 "repositories": [
 {
 "type": "vcs",
 "url": "http://svn.example.org/projectA/",
 "svn-cache-credentials": false
 }
]
}

PEAR

It is possible to install packages from any PEAR channel by using the pear
repository. Composer will prefix all package names with pear-{channelName}/
to avoid conflicts. All packages are also aliased with prefix
pear-{channelAlias}/.

Example using pear2.php.net:

{
 "repositories": [
 {
 "type": "pear",
 "url": "https://pear2.php.net"
 }
],
 "require": {
 "pear-pear2.php.net/PEAR2_Text_Markdown": "*",
 "pear-pear2/PEAR2_HTTP_Request": "*"
 }
}

In this case the short name of the channel is pear2, so the
PEAR2_HTTP_Request package name becomes pear-pear2/PEAR2_HTTP_Request.

Note: The pear repository requires doing quite a few requests per
package, so this may considerably slow down the installation process.

Custom vendor alias

It is possible to alias PEAR channel packages with a custom vendor name.

Example:

Suppose you have a private PEAR repository and wish to use Composer to
incorporate dependencies from a VCS. Your PEAR repository contains the
following packages:

	BasePackage

	IntermediatePackage, which depends on BasePackage

	TopLevelPackage1 and TopLevelPackage2 which both depend
on IntermediatePackage

Without a vendor alias, Composer will use the PEAR channel name as the
vendor portion of the package name:

	pear-pear.foobar.repo/BasePackage

	pear-pear.foobar.repo/IntermediatePackage

	pear-pear.foobar.repo/TopLevelPackage1

	pear-pear.foobar.repo/TopLevelPackage2

Suppose at a later time you wish to migrate your PEAR packages to a
Composer repository and naming scheme, and adopt the vendor name of foobar.
Projects using your PEAR packages would not see the updated packages, since
they have a different vendor name (foobar/IntermediatePackage vs
pear-pear.foobar.repo/IntermediatePackage).

By specifying vendor-alias for the PEAR repository from the start, you can
avoid this scenario and future-proof your package names.

To illustrate, the following example would get the BasePackage,
TopLevelPackage1, and TopLevelPackage2 packages from your PEAR repository
and IntermediatePackage from a Github repository:

{
 "repositories": [
 {
 "type": "git",
 "url": "https://github.com/foobar/intermediate.git"
 },
 {
 "type": "pear",
 "url": "http://pear.foobar.repo",
 "vendor-alias": "foobar"
 }
],
 "require": {
 "foobar/TopLevelPackage1": "*",
 "foobar/TopLevelPackage2": "*"
 }
}

Package

If you want to use a project that does not support Composer through any of the
means above, you still can define the package yourself by using a package
repository.

Basically, you define the same information that is included in the composer
repository’s packages.json, but only for a single package. Again, the
minimum required fields are name, version, and either of dist or
source.

Here is an example for the smarty template engine:

{
 "repositories": [
 {
 "type": "package",
 "package": {
 "name": "smarty/smarty",
 "version": "3.1.7",
 "dist": {
 "url": "https://www.smarty.net/files/Smarty-3.1.7.zip",
 "type": "zip"
 },
 "source": {
 "url": "http://smarty-php.googlecode.com/svn/",
 "type": "svn",
 "reference": "tags/Smarty_3_1_7/distribution/"
 },
 "autoload": {
 "classmap": ["libs/"]
 }
 }
 }
],
 "require": {
 "smarty/smarty": "3.1.*"
 }
}

Typically you would leave the source part off, as you don’t really need it.

Note: This repository type has a few limitations and should be avoided
whenever possible:

	Composer will not update the package unless you change the version field.

	Composer will not update the commit references, so if you use master as
reference you will have to delete the package to force an update, and will
have to deal with an unstable lock file.

The "package" key in a package repository may be set to an array to define multiple versions of a package:

{
 "repositories": [
 {
 "type": "package",
 "package": [
 {
 "name": "foo/bar",
 "version": "1.0.0",
 ...
 },
 {
 "name": "foo/bar",
 "version": "2.0.0",
 ...
 }
]
 }
]
}

Hosting your own

While you will probably want to put your packages on packagist most of the
time, there are some use cases for hosting your own repository.

	Private company packages: If you are part of a company that uses Composer
for their packages internally, you might want to keep those packages private.

	Separate ecosystem: If you have a project which has its own ecosystem,
and the packages aren’t really reusable by the greater PHP community, you
might want to keep them separate to packagist. An example of this would be
wordpress plugins.

For hosting your own packages, a native composer type of repository is
recommended, which provides the best performance.

There are a few tools that can help you create a composer repository.

Private Packagist

Private Packagist [https://packagist.com/] is a hosted or self-hosted
application providing private package hosting as well as mirroring of
GitHub, Packagist.org and other package repositories.

Check out Packagist.com [https://packagist.com/] for more information.

Satis

Satis is a static composer repository generator. It is a bit like an ultra-
lightweight, static file-based version of packagist.

You give it a composer.json containing repositories, typically VCS and
package repository definitions. It will fetch all the packages that are
required and dump a packages.json that is your composer repository.

Check the satis GitHub repository [https://github.com/composer/satis] and
the Satis article for more
information.

Artifact

There are some cases, when there is no ability to have one of the previously
mentioned repository types online, even the VCS one. Typical example could be
cross-organisation library exchange through built artifacts. Of course, most
of the times they are private. To simplify maintenance, one can simply use a
repository of type artifact with a folder containing ZIP archives of those
private packages:

{
 "repositories": [
 {
 "type": "artifact",
 "url": "path/to/directory/with/zips/"
 }
],
 "require": {
 "private-vendor-one/core": "15.6.2",
 "private-vendor-two/connectivity": "*",
 "acme-corp/parser": "10.3.5"
 }
}

Each zip artifact is a ZIP archive with composer.json in root folder:

unzip -l acme-corp-parser-10.3.5.zip

composer.json
...

If there are two archives with different versions of a package, they are both
imported. When an archive with a newer version is added in the artifact folder
and you run update, that version will be imported as well and Composer will
update to the latest version.

Path

In addition to the artifact repository, you can use the path one, which allows
you to depend on a local directory, either absolute or relative. This can be
especially useful when dealing with monolithic repositories.

For instance, if you have the following directory structure in your repository:

- apps
_ my-app
 _ composer.json
- packages
_ my-package
 _ composer.json

Then, to add the package my/package as a dependency, in your
apps/my-app/composer.json file, you can use the following configuration:

{
 "repositories": [
 {
 "type": "path",
 "url": "../../packages/my-package"
 }
],
 "require": {
 "my/package": "*"
 }
}

If the package is a local VCS repository, the version may be inferred by
the branch or tag that is currently checked out. Otherwise, the version should
be explicitly defined in the package’s composer.json file. If the version
cannot be resolved by these means, it is assumed to be dev-master.

The local package will be symlinked if possible, in which case the output in
the console will read Symlinking from ../../packages/my-package. If symlinking
is not possible the package will be copied. In that case, the console will
output Mirrored from ../../packages/my-package.

Instead of default fallback strategy you can force to use symlink with
"symlink": true or mirroring with "symlink": false option. Forcing
mirroring can be useful when deploying or generating package from a
monolithic repository.

Note: On Windows, directory symlinks are implemented using NTFS junctions
because they can be created by non-admin users. Mirroring will always be used
on versions below Windows 7 or if proc_open has been disabled.

{
 "repositories": [
 {
 "type": "path",
 "url": "../../packages/my-package",
 "options": {
 "symlink": false
 }
 }
]
}

Leading tildes are expanded to the current user’s home folder, and environment
variables are parsed in both Windows and Linux/Mac notations. For example
~/git/mypackage will automatically load the mypackage clone from
/home/<username>/git/mypackage, equivalent to $HOME/git/mypackage or
%USERPROFILE%/git/mypackage.

Note: Repository paths can also contain wildcards like * and ?.
For details, see the PHP glob function [http://php.net/glob].

Disabling Packagist.org

You can disable the default Packagist.org repository by adding this to your
composer.json:

{
 "repositories": [
 {
 "packagist.org": false
 }
]
}

You can disable Packagist.org globally by using the global config flag:

composer config -g repo.packagist false

← Schema | Config →

Config

This chapter will describe the config section of the composer.json
schema.

process-timeout

Defaults to 300. The duration processes like git clones can run before
Composer assumes they died out. You may need to make this higher if you have a
slow connection or huge vendors.

To disable the process timeout on a custom command under scripts, a static
helper is available:

{
 "scripts": {
 "test": [
 "Composer\\Config::disableProcessTimeout",
 "phpunit"
]
 }
}

use-include-path

Defaults to false. If true, the Composer autoloader will also look for classes
in the PHP include path.

preferred-install

Defaults to auto and can be any of source, dist or auto. This option
allows you to set the install method Composer will prefer to use. Can
optionally be a hash of patterns for more granular install preferences.

{
 "config": {
 "preferred-install": {
 "my-organization/stable-package": "dist",
 "my-organization/*": "source",
 "partner-organization/*": "auto",
 "*": "dist"
 }
 }
}

Note: Order matters. More specific patterns should be earlier than
more relaxed patterns. When mixing the string notation with the hash
configuration in global and package configurations the string notation
is translated to a * package pattern.

store-auths

What to do after prompting for authentication, one of: true (always store),
false (do not store) and "prompt" (ask every time), defaults to "prompt".

github-protocols

Defaults to ["https", "ssh", "git"]. A list of protocols to use when cloning
from github.com, in priority order. By default git is present but only if secure-http
is disabled, as the git protocol is not encrypted. If you want your origin remote
push URLs to be using https and not ssh (git@github.com:...), then set the protocol
list to be only ["https"] and Composer will stop overwriting the push URL to an ssh
URL.

github-oauth

A list of domain names and oauth keys. For example using {"github.com": "oauthtoken"} as the value of this option will use oauthtoken to access
private repositories on github and to circumvent the low IP-based rate limiting
of their API. Read
more on how to get
an OAuth token for GitHub.

gitlab-oauth

A list of domain names and oauth keys. For example using {"gitlab.com": "oauthtoken"} as the value of this option will use oauthtoken to access
private repositories on gitlab. Please note: If the package is not hosted at
gitlab.com the domain names must be also specified with the
gitlab-domains option.

gitlab-token

A list of domain names and private tokens. For example using {"gitlab.com": "privatetoken"} as the value of this option will use privatetoken to access
private repositories on gitlab. Please note: If the package is not hosted at
gitlab.com the domain names must be also specified with the
gitlab-domains option.

disable-tls

Defaults to false. If set to true all HTTPS URLs will be tried with HTTP
instead and no network level encryption is performed. Enabling this is a
security risk and is NOT recommended. The better way is to enable the
php_openssl extension in php.ini.

secure-http

Defaults to true. If set to true only HTTPS URLs are allowed to be
downloaded via Composer. If you really absolutely need HTTP access to something
then you can disable it, but using Let’s Encrypt [https://letsencrypt.org/] to
get a free SSL certificate is generally a better alternative.

bitbucket-oauth

A list of domain names and consumers. For example using {"bitbucket.org": {"consumer-key": "myKey", "consumer-secret": "mySecret"}}. Read [https://confluence.atlassian.com/bitbucket/oauth-on-bitbucket-cloud-238027431.html]
how to set up a consumer on Bitbucket.

cafile

Location of Certificate Authority file on local filesystem. In PHP 5.6+ you
should rather set this via openssl.cafile in php.ini, although PHP 5.6+ should
be able to detect your system CA file automatically.

capath

If cafile is not specified or if the certificate is not found there, the
directory pointed to by capath is searched for a suitable certificate.
capath must be a correctly hashed certificate directory.

http-basic

A list of domain names and username/passwords to authenticate against them. For
example using {"example.org": {"username": "alice", "password": "foo"}} as the
value of this option will let Composer authenticate against example.org.

Note: Authentication-related config options like http-basic and
github-oauth can also be specified inside a auth.json file that goes
besides your composer.json. That way you can gitignore it and every
developer can place their own credentials in there.

platform

Lets you fake platform packages (PHP and extensions) so that you can emulate a
production env or define your target platform in the config. Example: {"php": "7.0.3", "ext-something": "4.0.3"}.

vendor-dir

Defaults to vendor. You can install dependencies into a different directory if
you want to. $HOME and ~ will be replaced by your home directory’s path in
vendor-dir and all *-dir options below.

bin-dir

Defaults to vendor/bin. If a project includes binaries, they will be symlinked
into this directory.

data-dir

Defaults to C:\Users\<user>\AppData\Roaming\Composer on Windows,
$XDG_DATA_HOME/composer on unix systems that follow the XDG Base Directory
Specifications, and $home on other unix systems. Right now it is only
used for storing past composer.phar files to be able to rollback to older
versions. See also COMPOSER_HOME.

cache-dir

Defaults to C:\Users\<user>\AppData\Local\Composer on Windows,
$XDG_CACHE_HOME/composer on unix systems that follow the XDG Base Directory
Specifications, and $home/cache on other unix systems. Stores all the caches
used by Composer. See also COMPOSER_HOME.

cache-files-dir

Defaults to $cache-dir/files. Stores the zip archives of packages.

cache-repo-dir

Defaults to $cache-dir/repo. Stores repository metadata for the composer
type and the VCS repos of type svn, fossil, github and bitbucket.

cache-vcs-dir

Defaults to $cache-dir/vcs. Stores VCS clones for loading VCS repository
metadata for the git/hg types and to speed up installs.

cache-files-ttl

Defaults to 15552000 (6 months). Composer caches all dist (zip, tar, ..)
packages that it downloads. Those are purged after six months of being unused by
default. This option allows you to tweak this duration (in seconds) or disable
it completely by setting it to 0.

cache-files-maxsize

Defaults to 300MiB. Composer caches all dist (zip, tar, ..) packages that it
downloads. When the garbage collection is periodically ran, this is the maximum
size the cache will be able to use. Older (less used) files will be removed
first until the cache fits.

bin-compat

Defaults to auto. Determines the compatibility of the binaries to be installed.
If it is auto then Composer only installs .bat proxy files when on Windows. If
set to full then both .bat files for Windows and scripts for Unix-based
operating systems will be installed for each binary. This is mainly useful if you
run Composer inside a linux VM but still want the .bat proxies available for use
in the Windows host OS.

prepend-autoloader

Defaults to true. If false, the Composer autoloader will not be prepended to
existing autoloaders. This is sometimes required to fix interoperability issues
with other autoloaders.

autoloader-suffix

Defaults to null. String to be used as a suffix for the generated Composer
autoloader. When null a random one will be generated.

optimize-autoloader

Defaults to false. If true, always optimize when dumping the autoloader.

sort-packages

Defaults to false. If true, the require command keeps packages sorted
by name in composer.json when adding a new package.

classmap-authoritative

Defaults to false. If true, the Composer autoloader will only load classes
from the classmap. Implies optimize-autoloader.

apcu-autoloader

Defaults to false. If true, the Composer autoloader will check for APCu and
use it to cache found/not-found classes when the extension is enabled.

github-domains

Defaults to ["github.com"]. A list of domains to use in github mode. This is
used for GitHub Enterprise setups.

github-expose-hostname

Defaults to true. If false, the OAuth tokens created to access the
github API will have a date instead of the machine hostname.

gitlab-domains

Defaults to ["gitlab.com"]. A list of domains of GitLab servers.
This is used if you use the gitlab repository type.

use-github-api

Defaults to true. Similar to the no-api key on a specific repository,
setting use-github-api to false will define the global behavior for all
GitHub repositories to clone the repository as it would with any other git
repository instead of using the GitHub API. But unlike using the git
driver directly, Composer will still attempt to use GitHub’s zip files.

notify-on-install

Defaults to true. Composer allows repositories to define a notification URL,
so that they get notified whenever a package from that repository is installed.
This option allows you to disable that behaviour.

discard-changes

Defaults to false and can be any of true, false or "stash". This option
allows you to set the default style of handling dirty updates when in
non-interactive mode. true will always discard changes in vendors, while
"stash" will try to stash and reapply. Use this for CI servers or deploy
scripts if you tend to have modified vendors.

archive-format

Defaults to tar. Composer allows you to add a default archive format when the
workflow needs to create a dedicated archiving format.

archive-dir

Defaults to .. Composer allows you to add a default archive directory when the
workflow needs to create a dedicated archiving format. Or for easier development
between modules.

Example:

{
 "config": {
 "archive-dir": "/home/user/.composer/repo"
 }
}

htaccess-protect

Defaults to true. If set to false, Composer will not create .htaccess files
in the composer home, cache, and data directories.

← Repositories | Community →

Community

There are many people using Composer already, and quite a few of them are
contributing.

Contributing

If you would like to contribute to Composer, please read the
README [https://github.com/composer/composer] and
CONTRIBUTING [https://github.com/composer/composer/blob/master/.github/CONTRIBUTING]
documents.

The most important guidelines are described as follows:

All code contributions - including those of people having commit access - must
go through a pull request and approved by a core developer before being
merged. This is to ensure proper review of all the code.

Fork the project, create a feature branch, and send us a pull request.

To ensure a consistent code base, you should make sure the code follows
the PSR-2 Coding Standards [http://www.php-fig.org/psr/psr-2/].

IRC / mailing list

Mailing lists for user support [https://groups.google.com/group/composer-users] and
development [https://groups.google.com/group/composer-dev].

IRC channels are on irc.freenode.org: #composer
for users and #composer-dev for development.

Stack Overflow has a growing collection of
Composer related questions [https://stackoverflow.com/questions/tagged/composer-php].

← Config

Aliases

Why aliases?

When you are using a VCS repository, you will only get comparable versions for
branches that look like versions, such as 2.0 or 2.0.x. For your master branch, you
will get a dev-master version. For your bugfix branch, you will get a
dev-bugfix version.

If your master branch is used to tag releases of the 1.0 development line,
i.e. 1.0.1, 1.0.2, 1.0.3, etc., any package depending on it will
probably require version 1.0.*.

If anyone wants to require the latest dev-master, they have a problem: Other
packages may require 1.0.*, so requiring that dev version will lead to
conflicts, since dev-master does not match the 1.0.* constraint.

Enter aliases.

Branch alias

The dev-master branch is one in your main VCS repo. It is rather common that
someone will want the latest master dev version. Thus, Composer allows you to
alias your dev-master branch to a 1.0.x-dev version. It is done by
specifying a branch-alias field under extra in composer.json:

{
 "extra": {
 "branch-alias": {
 "dev-master": "1.0.x-dev"
 }
 }
}

If you alias a non-comparable version (such as dev-develop) dev- must prefix the
branch name. You may also alias a comparable version (i.e. start with numbers,
and end with .x-dev), but only as a more specific version.
For example, 1.x-dev could be aliased as 1.2.x-dev.

The alias must be a comparable dev version, and the branch-alias must be present on
the branch that it references. For dev-master, you need to commit it on the
master branch.

As a result, anyone can now require 1.0.* and it will happily install
dev-master.

In order to use branch aliasing, you must own the repository of the package
being aliased. If you want to alias a third party package without maintaining
a fork of it, use inline aliases as described below.

Require inline alias

Branch aliases are great for aliasing main development lines. But in order to
use them you need to have control over the source repository, and you need to
commit changes to version control.

This is not really fun when you want to try a bugfix of some library that
is a dependency of your local project.

For this reason, you can alias packages in your require and require-dev
fields. Let’s say you found a bug in the monolog/monolog package. You cloned
Monolog [https://github.com/Seldaek/monolog] on GitHub and fixed the issue in
a branch named bugfix. Now you want to install that version of monolog in your
local project.

You are using symfony/monolog-bundle which requires monolog/monolog version
1.*. So you need your dev-bugfix to match that constraint.

Add this to your project’s root composer.json:

{
 "repositories": [
 {
 "type": "vcs",
 "url": "https://github.com/you/monolog"
 }
],
 "require": {
 "symfony/monolog-bundle": "2.0",
 "monolog/monolog": "dev-bugfix as 1.0.x-dev"
 }
}

Or let composer add it for you with:

php composer.phar require monolog/monolog:"dev-bugfix as 1.0.x-dev"

That will fetch the dev-bugfix version of monolog/monolog from your GitHub
and alias it to 1.0.x-dev.

Note: Inline aliasing is a root-only feature. If a package with inline
aliases is required, the alias (right of the as) is used as the version
constraint. The part left of the as is discarded. As a consequence, if
A requires B and B requires monolog/monolog version dev-bugfix as 1.0.x-dev,
installing A will make B require 1.0.x-dev, which may exist as a branch
alias or an actual 1.0 branch. If it does not, it must be
inline-aliased again in A’s composer.json.

Note: Inline aliasing should be avoided, especially for published
packages/libraries. If you found a bug, try and get your fix merged upstream.
This helps to avoid issues for users of your package.

Autoloader Optimization

By default, the Composer autoloader runs relatively fast. However, due to the way
PSR-4 and PSR-0 autoloading rules are set up, it needs to check the filesystem
before resolving a classname conclusively. This slows things down quite a bit,
but it is convenient in development environments because when you add a new class
it can immediately be discovered/used without having to rebuild the autoloader
configuration.

The problem however is in production you generally want things to happen as fast
as possible, as you can simply rebuild the configuration every time you deploy and
new classes do not appear at random between deploys.

For this reason, Composer offers a few strategies to optimize the autoloader.

Note: You should not enable any of these optimizations in development as
they all will cause various problems when adding/removing classes. The performance
gains are not worth the trouble in a development setting.

Optimization Level 1: Class map generation

How to run it?

There are a few options to enable this:

	Set "optimize-autoloader": true inside the config key of composer.json

	Call install or update with -o / --optimize-autoloader

	Call dump-autoload with -o / --optimize

What does it do?

Class map generation essentially converts PSR-4/PSR-0 rules into classmap rules.
This makes everything quite a bit faster as for known classes the class map
returns instantly the path, and Composer can guarantee the class is in there so
there is no filesystem check needed.

On PHP 5.6+, the class map is also cached in opcache which improves the initialization
time greatly. If you make sure opcache is enabled, then the class map should load
almost instantly and then class loading is fast.

Trade-offs

There are no real trade-offs with this method. It should always be enabled in
production.

The only issue is it does not keep track of autoload misses (i.e. when
it can not find a given class), so those fallback to PSR-4 rules and can still
result in slow filesystem checks. To solve this issue two Level 2 optimization
options exist, and you can decide to enable either if you have a lot of
class_exists checks that are done for classes that do not exist in your project.

Optimization Level 2/A: Authoritative class maps

How to run it?

There are a few options to enable this:

	Set "classmap-authoritative": true inside the config key of composer.json

	Call install or update with -a / --classmap-authoritative

	Call dump-autoload with -a / --classmap-authoritative

What does it do?

Enabling this automatically enables Level 1 class map optimizations.

This option is very simple, it says that if something is not found in the classmap,
then it does not exist and the autoloader should not attempt to look on the
filesystem according to PSR-4 rules.

Trade-offs

This option makes the autoloader always return very quickly. On the flipside it
also means that in case a class is generated at runtime for some reason, it will
not be allowed to be autoloaded. If your project or any of your dependencies does that
then you might experience “class not found” issues in production. Enable this with care.

Note: This can not be combined with Level 2/B optimizations. You have to choose one as
they address the same issue in different ways.

Optimization Level 2/B: APCu cache

How to run it?

There are a few options to enable this:

	Set "apcu-autoloader": true inside the config key of composer.json

	Call install or update with --apcu-autoloader

	Call dump-autoload with --apcu

What does it do?

This option adds an APCu cache as a fallback for the class map. It will not
automatically generate the class map though, so you should still enable Level 1
optimizations manually if you so desire.

Whether a class is found or not, that fact is always cached in APCu so it can be
returned quickly on the next request.

Trade-offs

This option requires APCu which may or may not be available to you. It also
uses APCu memory for autoloading purposes, but it is safe to use and can not
result in classes not being found like the authoritative class map
optimization above.

Note: This can not be combined with Level 2/A optimizations. You have to choose one as
they address the same issue in different ways.

Setting up and using custom installers

Synopsis

At times it may be necessary for a package to require additional actions during
installation, such as installing packages outside of the default vendor
library.

In these cases you could consider creating a Custom Installer to handle your
specific logic.

Calling a Custom Installer

Suppose that your project already has a Custom Installer for specific modules
then invoking that installer is a matter of defining the correct type in
your package file.

See the next chapter for an instruction how to create Custom Installers.

Every Custom Installer defines which type string it will recognize. Once
recognized it will completely override the default installer and only apply its
own logic.

An example use-case would be:

phpDocumentor features Templates that need to be installed outside of the
default /vendor folder structure. As such they have chosen to adopt the
phpdocumentor-template type and create a plugin providing the Custom
Installer to send these templates to the correct folder.

An example composer.json of such a template package would be:

{
 "name": "phpdocumentor/template-responsive",
 "type": "phpdocumentor-template",
 "require": {
 "phpdocumentor/template-installer-plugin": "*"
 }
}

IMPORTANT: to make sure that the template installer is present at the
time the template package is installed, template packages should require
the plugin package.

Creating an Installer

A Custom Installer is defined as a class that implements the
Composer\Installer\InstallerInterface [https://github.com/composer/composer/blob/master/src/Composer/Installer/InstallerInterface.php] and is usually distributed in a
Composer Plugin.

A basic Installer Plugin would thus compose of three files:

	the package file: composer.json

	The Plugin class, e.g.: My\Project\Composer\Plugin.php, containing a class that implements Composer\Plugin\PluginInterface.

	The Installer class, e.g.: My\Project\Composer\Installer.php, containing a class that implements Composer\Installer\InstallerInterface.

composer.json

The package file is the same as any other package file but with the following
requirements:

	the type attribute must be composer-plugin.

	the extra attribute must contain an element class defining the
class name of the plugin (including namespace). If a package contains
multiple plugins this can be array of class names.

Example:

{
 "name": "phpdocumentor/template-installer-plugin",
 "type": "composer-plugin",
 "license": "MIT",
 "autoload": {
 "psr-0": {"phpDocumentor\\Composer": "src/"}
 },
 "extra": {
 "class": "phpDocumentor\\Composer\\TemplateInstallerPlugin"
 },
 "require": {
 "composer-plugin-api": "^1.0"
 },
 "require-dev": {
 "composer/composer": "^1.3"
 }
}

The example above has Composer itself in its require-dev, which allows you to use
the Composer classes in your test suite for example.

The Plugin class

The class defining the Composer plugin must implement the
Composer\Plugin\PluginInterface [https://github.com/composer/composer/blob/master/src/Composer/Plugin/PluginInterface.php]. It can then register the Custom
Installer in its activate() method.

The class may be placed in any location and have any name, as long as it is
autoloadable and matches the extra.class element in the package definition.

Example:

<?php

namespace phpDocumentor\Composer;

use Composer\Composer;
use Composer\IO\IOInterface;
use Composer\Plugin\PluginInterface;

class TemplateInstallerPlugin implements PluginInterface
{
 public function activate(Composer $composer, IOInterface $io)
 {
 $installer = new TemplateInstaller($io, $composer);
 $composer->getInstallationManager()->addInstaller($installer);
 }
}

The Custom Installer class

The class that executes the custom installation should implement the
Composer\Installer\InstallerInterface [https://github.com/composer/composer/blob/master/src/Composer/Installer/InstallerInterface.php] (or extend another installer that
implements that interface). It defines the type string as it will be
recognized by packages that will use this installer in the supports() method.

NOTE: choose your type name carefully, it is recommended to follow
the format: vendor-type. For example: phpdocumentor-template.

The InstallerInterface class defines the following methods (please see the
source for the exact signature):

	supports(), here you test whether the passed type matches the name
that you declared for this installer (see the example).

	isInstalled(), determines whether a supported package is installed or not.

	install(), here you can determine the actions that need to be executed
upon installation.

	update(), here you define the behavior that is required when Composer is
invoked with the update argument.

	uninstall(), here you can determine the actions that need to be executed
when the package needs to be removed.

	getInstallPath(), this method should return the location where the
package is to be installed, relative from the location of composer.json.

Example:

<?php

namespace phpDocumentor\Composer;

use Composer\Package\PackageInterface;
use Composer\Installer\LibraryInstaller;

class TemplateInstaller extends LibraryInstaller
{
 /**
 * {@inheritDoc}
 */
 public function getInstallPath(PackageInterface $package)
 {
 $prefix = substr($package->getPrettyName(), 0, 23);
 if ('phpdocumentor/template-' !== $prefix) {
 throw new \InvalidArgumentException(
 'Unable to install template, phpdocumentor templates '
 .'should always start their package name with '
 .'"phpdocumentor/template-"'
);
 }

 return 'data/templates/'.substr($package->getPrettyName(), 23);
 }

 /**
 * {@inheritDoc}
 */
 public function supports($packageType)
 {
 return 'phpdocumentor-template' === $packageType;
 }
}

The example demonstrates that it is quite simple to extend the
Composer\Installer\LibraryInstaller [https://github.com/composer/composer/blob/master/src/Composer/Installer/LibraryInstaller.php] class to strip a prefix
(phpdocumentor/template-) and use the remaining part to assemble a completely
different installation path.

Instead of being installed in /vendor any package installed using this
Installer will be put in the /data/templates/<stripped name> folder.

Handling private packages

Private Packagist

Private Packagist [https://packagist.com] is a commercial package hosting product
offering professional support and web based management of private and public packages,
and granular access permissions. Private Packagist provides mirroring for packages’ zip
files which makes installs faster and independent from third party systems - e.g.
you can deploy even if GitHub is down because your zip files are mirrored.

Private Packagist is available as a hosted SaaS solution or as an on-premise self-hosted
package, providing an easy interactive set up experience.

Some of Private Packagist’s revenue is used to pay for Composer and Packagist.org
development and hosting so using it is a good way to support the maintenance of
these open source projects financially. You can find more information about how to
set up your own package archive on Packagist.com [https://packagist.com].

Satis

Satis on the other hand is open source but only a static composer repository
generator. It is a bit like an ultra-lightweight, static file-based version of
packagist and can be used to host the metadata of your company’s private
packages, or your own. You can get it from
GitHub [https://github.com/composer/satis] or install via CLI:

php composer.phar create-project composer/satis --stability=dev --keep-vcs

Setup

For example let’s assume you have a few packages you want to reuse across your
company but don’t really want to open-source. You would first define a Satis
configuration: a json file with an arbitrary name that lists your curated
repositories.

Here is an example configuration, you see that it holds a few VCS repositories,
but those could be any types of repositories. Then it
uses "require-all": true which selects all versions of all packages in the
repositories you defined.

The default file Satis looks for is satis.json in the root of the repository.

{
 "name": "My Repository",
 "homepage": "http://packages.example.org",
 "repositories": [
 { "type": "vcs", "url": "https://github.com/mycompany/privaterepo" },
 { "type": "vcs", "url": "http://svn.example.org/private/repo" },
 { "type": "vcs", "url": "https://github.com/mycompany/privaterepo2" }
],
 "require-all": true
}

If you want to cherry pick which packages you want, you can list all the
packages you want to have in your satis repository inside the classic composer
require key, using a "*" constraint to make sure all versions are selected,
or another constraint if you want really specific versions.

{
 "repositories": [
 { "type": "vcs", "url": "https://github.com/mycompany/privaterepo" },
 { "type": "vcs", "url": "http://svn.example.org/private/repo" },
 { "type": "vcs", "url": "https://github.com/mycompany/privaterepo2" }
],
 "require": {
 "company/package": "*",
 "company/package2": "*",
 "company/package3": "2.0.0"
 }
}

Once you’ve done this, you run:

php bin/satis build <configuration file> <build dir>

When you ironed out that process, what you would typically do is run this
command as a cron job on a server. It would then update all your package info
much like Packagist does.

Note that if your private packages are hosted on GitHub, your server should
have an ssh key that gives it access to those packages, and then you should add
the --no-interaction (or -n) flag to the command to make sure it falls back
to ssh key authentication instead of prompting for a password. This is also a
good trick for continuous integration servers.

Set up a virtual-host that points to that web/ directory, let’s say it is
packages.example.org. Alternatively, with PHP >= 5.4.0, you can use the
built-in CLI server php -S localhost:port -t satis-output-dir/ for a
temporary solution.

Partial Updates

You can tell Satis to selectively update only particular packages or process
only a repository with a given URL. This cuts down the time it takes to rebuild
the package.json file and is helpful if you use (custom) webhooks to trigger
rebuilds whenever code is pushed into one of your repositories.

To rebuild only particular packages, pass the package names on the command line
like so:

php bin/satis build satis.json web/ this/package that/other-package

Note that this will still need to pull and scan all of your VCS repositories
because any VCS repository might contain (on any branch) one of the selected
packages.

If you want to scan only the selected package and not all VCS repositories you need
to declare a name for all your package (this only work on VCS repositories type) :

{
 "repositories": [
 { "name": "company/privaterepo", "type": "vcs", "url": "https://github.com/mycompany/privaterepo" },
 { "name": "private/repo", "type": "vcs", "url": "http://svn.example.org/private/repo" },
 { "name": "mycompany/privaterepo2", "type": "vcs", "url": "https://github.com/mycompany/privaterepo2" }
]
}

If you want to scan only a single repository and update all packages found in
it, pass the VCS repository URL as an optional argument:

php bin/satis build --repository-url https://only.my/repo.git satis.json web/

Usage

In your projects all you need to add now is your own composer repository using
the packages.example.org as URL, then you can require your private packages
and everything should work smoothly. You don’t need to copy all your
repositories in every project anymore. Only that one unique repository that
will update itself.

{
 "repositories": [{ "type": "composer", "url": "http://packages.example.org/" }],
 "require": {
 "company/package": "1.2.0",
 "company/package2": "1.5.2",
 "company/package3": "dev-master"
 }
}

Security

To secure your private repository you can host it over SSH or SSL using a client
certificate. In your project you can use the options parameter to specify the
connection options for the server.

Example using a custom repository using SSH (requires the SSH2 PECL extension):

{
 "repositories": [{
 "type": "composer",
 "url": "ssh2.sftp://example.org",
 "options": {
 "ssh2": {
 "username": "composer",
 "pubkey_file": "/home/composer/.ssh/id_rsa.pub",
 "privkey_file": "/home/composer/.ssh/id_rsa"
 }
 }
 }]
}

Tip: See ssh2 context options [https://secure.php.net/manual/en/wrappers.ssh2.php#refsect1-wrappers.ssh2-options] for more information.

Example using SSL/TLS (HTTPS) using a client certificate:

{
 "repositories": [{
 "type": "composer",
 "url": "https://example.org",
 "options": {
 "ssl": {
 "local_cert": "/home/composer/.ssl/composer.pem"
 }
 }
 }]
}

Tip: See ssl context options [https://secure.php.net/manual/en/context.ssl.php] for more information.

Example using a custom HTTP Header field for token authentication:

{
 "repositories": [{
 "type": "composer",
 "url": "https://example.org",
 "options": {
 "http": {
 "header": [
 "API-TOKEN: YOUR-API-TOKEN"
]
 }
 }
 }]
}

Authentication

When your private repositories are password protected, you can store the
authentication details permanently. The first time Composer needs to
authenticate against some domain it will prompt you for a username/password and
then you will be asked whether you want to store it.

The storage can be done either globally in the COMPOSER_HOME/auth.json file
(COMPOSER_HOME defaults to ~/.composer or %APPDATA%/Composer on Windows)
or also in the project directory directly sitting besides your composer.json.

You can also configure these by hand using the config command if you need to
configure a production machine to be able to run non-interactive installs. For
example to enter credentials for example.org one could type:

composer config http-basic.example.org username password

That will store it in the current directory’s auth.json, but if you want it
available globally you can use the --global (-g) flag.

Downloads

When GitHub, GitLab or BitBucket repositories are mirrored on your local satis, the
build process will include the location of the downloads these platforms make
available. This means that the repository and your setup depend on the
availability of these services.

At the same time, this implies that all code which is hosted somewhere else (on
another service or for example in Subversion) will not have downloads available
and thus installations usually take a lot longer.

To enable your satis installation to create downloads for all (Git, Mercurial
and Subversion) your packages, add the following to your satis.json:

{
 "archive": {
 "directory": "dist",
 "format": "tar",
 "prefix-url": "https://amazing.cdn.example.org",
 "skip-dev": true
 }
}

Options explained

	directory: required, the location of the dist files (inside the
output-dir)

	format: optional, zip (default) or tar

	prefix-url: optional, location of the downloads, homepage (from
satis.json) followed by directory by default

	skip-dev: optional, false by default, when enabled (true) satis will
not create downloads for branches

	absolute-directory: optional, a local directory where the dist files are
dumped instead of output-dir/directory

	whitelist: optional, if set as a list of package names, satis will only
dump the dist files of these packages

	blacklist: optional, if set as a list of package names, satis will not
dump the dist files of these packages

	checksum: optional, true by default, when disabled (false) satis will
not provide the sha1 checksum for the dist files

Once enabled, all downloads (include those from GitHub and BitBucket) will be
replaced with a local version.

prefix-url

Prefixing the URL with another host is especially helpful if the downloads end
up in a private Amazon S3 bucket or on a CDN host. A CDN would drastically
improve download times and therefore package installation.

Example: A prefix-url of https://my-bucket.s3.amazonaws.com (and
directory set to dist) creates download URLs which look like the following:
https://my-bucket.s3.amazonaws.com/dist/vendor-package-version-ref.zip.

Web outputs

	output-html: optional, true by default, when disabled (false) satis
will not generate the output-dir/index.html page.

	twig-template: optional, a path to a personalized Twig [https://twig.sensiolabs.org/] template for
the output-dir/index.html page.

Abandoned packages

To enable your satis installation to indicate that some packages are abandoned,
add the following to your satis.json:

{
 "abandoned": {
 "company/package": true,
 "company/package2": "company/newpackage"
 }
}

The true value indicates that the package is truly abandoned while the
"company/newpackage" value specifies that the package is replaced by the
company/newpackage package.

Note that all packages set as abandoned in their own composer.json file will
be marked abandoned as well.

Resolving dependencies

It is possible to make satis automatically resolve and add all dependencies for
your projects. This can be used with the Downloads functionality to have a
complete local mirror of packages. Add the following to your satis.json:

{
 "require-dependencies": true,
 "require-dev-dependencies": true
}

When searching for packages, satis will attempt to resolve all the required
packages from the listed repositories. Therefore, if you are requiring a
package from Packagist, you will need to define it in your satis.json.

Dev dependencies are packaged only if the require-dev-dependencies parameter
is set to true.

Other options

	providers: optional, false by default, when enabled (true) each
package will be dumped into a separate include file which will be only
loaded by composer when the package is really required. Speeds up composer
handling for repositories with huge number of packages like f.i. packagist.

	output-dir: optional, defines where to output the repository files if not
provided as an argument when calling the build command.

	config: optional, lets you define all config options from composer, except
archive-format and archive-dir as the configuration is done through
archive instead. See docs on config schema [https://getcomposer.org/doc/04-schema.md#config] for more details.

	notify-batch: optional, specify a URL that will be called every time a
user installs a package. See notify-batch [https://getcomposer.org/doc/05-repositories.md#notify-batch].

HTTP basic authentication

Your Satis or Toran Proxy server
could be secured with http basic authentication. In order to allow your project
to have access to these packages you will have to tell composer how to
authenticate with your credentials.

The simplest way to provide your credentials is providing your set
of credentials inline with the repository specification such as:

{
 "repositories": [
 {
 "type": "composer",
 "url": "https://extremely:secret@repo.example.org"
 }
]
}

This will basically teach composer how to authenticate automatically
when reading packages from the provided composer repository.

This does not work for everybody especially when you don’t want to
hard code your credentials into your composer.json. There is a second
way to provide these details and it is via interaction. If you don’t
provide the authentication credentials composer will prompt you upon
connection to enter the username and password.

The third way if you want to pre-configure it is via an auth.json file
located in your COMPOSER_HOME or besides your composer.json.

The file should contain a set of hostnames followed each with their own
username/password pairs, for example:

{
 "http-basic": {
 "repo.example1.org": {
 "username": "my-username1",
 "password": "my-secret-password1"
 },
 "repo.example2.org": {
 "username": "my-username2",
 "password": "my-secret-password2"
 }
 }
}

The main advantage of the auth.json file is that it can be gitignored so
that every developer in your team can place their own credentials in there,
which makes revocation of credentials much easier than if you all share the
same.

Setting up and using plugins

Synopsis

You may wish to alter or expand Composer’s functionality with your own. For
example if your environment poses special requirements on the behaviour of
Composer which do not apply to the majority of its users or if you wish to
accomplish something with composer in a way that is not desired by most users.

In these cases you could consider creating a plugin to handle your
specific logic.

Creating a Plugin

A plugin is a regular Composer package which ships its code as part of the
package and may also depend on further packages.

Plugin Package

The package file is the same as any other package file but with the following
requirements:

	The type attribute must be composer-plugin.

	The extra attribute must contain an element class defining the
class name of the plugin (including namespace). If a package contains
multiple plugins, this can be array of class names.

	You must require the special package called composer-plugin-api
to define which Plugin API versions your plugin is compatible with.

The required version of the composer-plugin-api follows the same rules
as a normal package’s.

The current composer plugin API version is 1.1.0.

An example of a valid plugin composer.json file (with the autoloading
part omitted):

{
 "name": "my/plugin-package",
 "type": "composer-plugin",
 "require": {
 "composer-plugin-api": "^1.1"
 },
 "extra": {
 "class": "My\\Plugin"
 }
}

Plugin Class

Every plugin has to supply a class which implements the
Composer\Plugin\PluginInterface [https://github.com/composer/composer/blob/master/src/Composer/Plugin/PluginInterface.php]. The activate() method of the plugin
is called after the plugin is loaded and receives an instance of
Composer\Composer [https://github.com/composer/composer/blob/master/src/Composer/Composer.php] as well as an instance of
Composer\IO\IOInterface [https://github.com/composer/composer/blob/master/src/Composer/IO/IOInterface.php]. Using these two objects all configuration can
be read and all internal objects and state can be manipulated as desired.

Example:

<?php

namespace phpDocumentor\Composer;

use Composer\Composer;
use Composer\IO\IOInterface;
use Composer\Plugin\PluginInterface;

class TemplateInstallerPlugin implements PluginInterface
{
 public function activate(Composer $composer, IOInterface $io)
 {
 $installer = new TemplateInstaller($io, $composer);
 $composer->getInstallationManager()->addInstaller($installer);
 }
}

Event Handler

Furthermore plugins may implement the
Composer\EventDispatcher\EventSubscriberInterface [https://github.com/composer/composer/blob/master/src/Composer/EventDispatcher/EventSubscriberInterface.php] in order to have its
event handlers automatically registered with the EventDispatcher when the
plugin is loaded.

To register a method to an event, implement the method getSubscribedEvents()
and have it return an array. The array key must be the
event name [https://getcomposer.org/doc/articles/scripts.md#event-names]
and the value is the name of the method in this class to be called.

public static function getSubscribedEvents()
{
 return array(
 'post-autoload-dump' => 'methodToBeCalled',
 // ^ event name ^ ^ method name ^
);
}

By default, the priority of an event handler is set to 0. The priority can be
changed by attaching a tuple where the first value is the method name, as
before, and the second value is an integer representing the priority.
Higher integers represent higher priorities. Priority 2 is called before
priority 1, etc.

public static function getSubscribedEvents()
{
 return array(
 // Will be called before events with priority 0
 'post-autoload-dump' => array('methodToBeCalled', 1)
);
}

If multiple methods should be called, then an array of tuples can be attached
to each event. The tuples do not need to include the priority. If it is
omitted, it will default to 0.

public static function getSubscribedEvents()
{
 return array(
 'post-autoload-dump' => array(
 array('methodToBeCalled'), // Priority defaults to 0
 array('someOtherMethodName', 1), // This fires first
)
);
}

Here’s a complete example:

<?php

namespace Naderman\Composer\AWS;

use Composer\Composer;
use Composer\EventDispatcher\EventSubscriberInterface;
use Composer\IO\IOInterface;
use Composer\Plugin\PluginInterface;
use Composer\Plugin\PluginEvents;
use Composer\Plugin\PreFileDownloadEvent;

class AwsPlugin implements PluginInterface, EventSubscriberInterface
{
 protected $composer;
 protected $io;

 public function activate(Composer $composer, IOInterface $io)
 {
 $this->composer = $composer;
 $this->io = $io;
 }

 public static function getSubscribedEvents()
 {
 return array(
 PluginEvents::PRE_FILE_DOWNLOAD => array(
 array('onPreFileDownload', 0)
),
);
 }

 public function onPreFileDownload(PreFileDownloadEvent $event)
 {
 $protocol = parse_url($event->getProcessedUrl(), PHP_URL_SCHEME);

 if ($protocol === 's3') {
 $awsClient = new AwsClient($this->io, $this->composer->getConfig());
 $s3RemoteFilesystem = new S3RemoteFilesystem($this->io, $event->getRemoteFilesystem()->getOptions(), $awsClient);
 $event->setRemoteFilesystem($s3RemoteFilesystem);
 }
 }
}

Plugin capabilities

Composer defines a standard set of capabilities which may be implemented by plugins.
Their goal is to make the plugin ecosystem more stable as it reduces the need to mess
with Composer\Composer [https://github.com/composer/composer/blob/master/src/Composer/Composer.php]’s internal state, by providing explicit extension points
for common plugin requirements.

Capable Plugins classes must implement the Composer\Plugin\Capable [https://github.com/composer/composer/blob/master/src/Composer/Plugin/Capable.php] interface
and declare their capabilities in the getCapabilities() method.
This method must return an array, with the key as a Composer Capability class name,
and the value as the Plugin’s own implementation class name of said Capability:

<?php

namespace My\Composer;

use Composer\Composer;
use Composer\IO\IOInterface;
use Composer\Plugin\PluginInterface;
use Composer\Plugin\Capable;

class Plugin implements PluginInterface, Capable
{
 public function activate(Composer $composer, IOInterface $io)
 {
 }

 public function getCapabilities()
 {
 return array(
 'Composer\Plugin\Capability\CommandProvider' => 'My\Composer\CommandProvider',
);
 }
}

Command provider

The Composer\Plugin\Capability\CommandProvider [https://github.com/composer/composer/blob/master/src/Composer/Plugin/Capability/CommandProvider.php] capability allows to register
additional commands for Composer :

<?php

namespace My\Composer;

use Composer\Plugin\Capability\CommandProvider as CommandProviderCapability;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Composer\Command\BaseCommand;

class CommandProvider implements CommandProviderCapability
{
 public function getCommands()
 {
 return array(new Command);
 }
}

class Command extends BaseCommand
{
 protected function configure()
 {
 $this->setName('custom-plugin-command');
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 $output->writeln('Executing');
 }
}

Now the custom-plugin-command is available alongside Composer commands.

Composer commands are based on the Symfony Console Component [https://symfony.com/doc/current/components/console.html].

Running plugins manually

Plugins for an event can be run manually by the run-script command. This works the same way as
running scripts manually.

Using Plugins

Plugin packages are automatically loaded as soon as they are installed and will
be loaded when composer starts up if they are found in the current project’s
list of installed packages. Additionally all plugin packages installed in the
COMPOSER_HOME directory using the composer global command are loaded before
local project plugins are loaded.

You may pass the --no-plugins option to composer commands to disable all
installed plugins. This may be particularly helpful if any of the plugins
causes errors and you wish to update or uninstall it.

Scripts

What is a script?

A script, in Composer’s terms, can either be a PHP callback (defined as a
static method) or any command-line executable command. Scripts are useful
for executing a package’s custom code or package-specific commands during
the Composer execution process.

Note: Only scripts defined in the root package’s composer.json are
executed. If a dependency of the root package specifies its own scripts,
Composer does not execute those additional scripts.

Event names

Composer fires the following named events during its execution process:

Command Events

	pre-install-cmd: occurs before the install command is executed with a
lock file present.

	post-install-cmd: occurs after the install command has been executed
with a lock file present.

	pre-update-cmd: occurs before the update command is executed, or before
the install command is executed without a lock file present.

	post-update-cmd: occurs after the update command has been executed, or
after the install command has been executed without a lock file present.

	post-status-cmd: occurs after the status command has been executed.

	pre-archive-cmd: occurs before the archive command is executed.

	post-archive-cmd: occurs after the archive command has been executed.

	pre-autoload-dump: occurs before the autoloader is dumped, either during
install/update, or via the dump-autoload command.

	post-autoload-dump: occurs after the autoloader has been dumped, either
during install/update, or via the dump-autoload command.

	post-root-package-install: occurs after the root package has been
installed, during the create-project command.

	post-create-project-cmd: occurs after the create-project command has
been executed.

Installer Events

	pre-dependencies-solving: occurs before the dependencies are resolved.

	post-dependencies-solving: occurs after the dependencies have been resolved.

Package Events

	pre-package-install: occurs before a package is installed.

	post-package-install: occurs after a package has been installed.

	pre-package-update: occurs before a package is updated.

	post-package-update: occurs after a package has been updated.

	pre-package-uninstall: occurs before a package is uninstalled.

	post-package-uninstall: occurs after a package has been uninstalled.

Plugin Events

	init: occurs after a Composer instance is done being initialized.

	command: occurs before any Composer Command is executed on the CLI. It
provides you with access to the input and output objects of the program.

	pre-file-download: occurs before files are downloaded and allows
you to manipulate the RemoteFilesystem object prior to downloading files
based on the URL to be downloaded.

	pre-command-run: occurs before a command is executed and allows you to
manipulate the InputInterface object’s options and arguments to tweak
a command’s behavior.

Note: Composer makes no assumptions about the state of your dependencies
prior to install or update. Therefore, you should not specify scripts
that require Composer-managed dependencies in the pre-update-cmd or
pre-install-cmd event hooks. If you need to execute scripts prior to
install or update please make sure they are self-contained within your
root package.

Defining scripts

The root JSON object in composer.json should have a property called
"scripts", which contains pairs of named events and each event’s
corresponding scripts. An event’s scripts can be defined as either a string
(only for a single script) or an array (for single or multiple scripts.)

For any given event:

	Scripts execute in the order defined when their corresponding event is fired.

	An array of scripts wired to a single event can contain both PHP callbacks
and command-line executable commands.

	PHP classes containing defined callbacks must be autoloadable via Composer’s
autoload functionality.

	Callbacks can only autoload classes from psr-0, psr-4 and classmap
definitions. If a defined callback relies on functions defined outside of a
class, the callback itself is responsible for loading the file containing these
functions.

Script definition example:

{
 "scripts": {
 "post-update-cmd": "MyVendor\\MyClass::postUpdate",
 "post-package-install": [
 "MyVendor\\MyClass::postPackageInstall"
],
 "post-install-cmd": [
 "MyVendor\\MyClass::warmCache",
 "phpunit -c app/"
],
 "post-autoload-dump": [
 "MyVendor\\MyClass::postAutoloadDump"
],
 "post-create-project-cmd": [
 "php -r \"copy('config/local-example.php', 'config/local.php');\""
]
 }
}

Using the previous definition example, here’s the class MyVendor\MyClass
that might be used to execute the PHP callbacks:

<?php

namespace MyVendor;

use Composer\Script\Event;
use Composer\Installer\PackageEvent;

class MyClass
{
 public static function postUpdate(Event $event)
 {
 $composer = $event->getComposer();
 // do stuff
 }

 public static function postAutoloadDump(Event $event)
 {
 $vendorDir = $event->getComposer()->getConfig()->get('vendor-dir');
 require $vendorDir . '/autoload.php';

 some_function_from_an_autoloaded_file();
 }

 public static function postPackageInstall(PackageEvent $event)
 {
 $installedPackage = $event->getOperation()->getPackage();
 // do stuff
 }

 public static function warmCache(Event $event)
 {
 // make cache toasty
 }
}

Note: During a composer install or update process, a variable named
COMPOSER_DEV_MODE will be added to the environment. If the command was run
with the --no-dev flag, this variable will be set to 0, otherwise it will be
set to 1.

Event classes

When an event is fired, your PHP callback receives as first argument a
Composer\EventDispatcher\Event object. This object has a getName() method
that lets you retrieve the event name.

Depending on the script types you will get various event
subclasses containing various getters with relevant data and associated
objects:

	Base class: Composer\EventDispatcher\Event [https://getcomposer.org/apidoc/master/Composer/EventDispatcher/Event.html]

	Command Events: Composer\Script\Event [https://getcomposer.org/apidoc/master/Composer/Script/Event.html]

	Installer Events: Composer\Installer\InstallerEvent [https://getcomposer.org/apidoc/master/Composer/Installer/InstallerEvent.html]

	Package Events: Composer\Installer\PackageEvent [https://getcomposer.org/apidoc/master/Composer/Installer/PackageEvent.html]

	Plugin Events:

	init: Composer\EventDispatcher\Event [https://getcomposer.org/apidoc/master/Composer/EventDispatcher/Event.html]

	command: Composer\Plugin\CommandEvent [https://getcomposer.org/apidoc/master/Composer/Plugin/CommandEvent.html]

	pre-file-download: Composer\Plugin\PreFileDownloadEvent [https://getcomposer.org/apidoc/master/Composer/Plugin/PreFileDownloadEvent.html]

Running scripts manually

If you would like to run the scripts for an event manually, the syntax is:

composer run-script [--dev] [--no-dev] script

For example composer run-script post-install-cmd will run any
post-install-cmd scripts and plugins that have been defined.

You can also give additional arguments to the script handler by appending --
followed by the handler arguments. e.g.
composer run-script post-install-cmd -- --check will pass--check along to
the script handler. Those arguments are received as CLI arg by CLI handlers,
and can be retrieved as an array via $event->getArguments() by PHP handlers.

Writing custom commands

If you add custom scripts that do not fit one of the predefined event name
above, you can either run them with run-script or also run them as native
Composer commands. For example the handler defined below is executable by
simply running composer test:

{
 "scripts": {
 "test": "phpunit"
 }
}

Similar to the run-script command you can give additional arguments to scripts,
e.g. composer test -- --filter <pattern> will pass --filter <pattern> along
to the phpunit script.

Note: Before executing scripts, Composer’s bin-dir is temporarily pushed
on top of the PATH environment variable so that binaries of dependencies
are easily accessible. In this example no matter if the phpunit binary is
actually in vendor/bin/phpunit or bin/phpunit it will be found and executed.

Although Composer is not intended to manage long-running processes and other
such aspects of PHP projects, it can sometimes be handy to disable the process
timeout on custom commands. This timeout defaults to 300 seconds and can be
overridden in a variety of ways depending on the desired effect:

	disable it for all commands using the config key process-timeout,

	disable it for the current or future invocations of composer using the
environment variable COMPOSER_PROCESS_TIMEOUT,

	for a specific invocation using the --timeout flag of the run-script command,

	using a static helper for specific scripts.

To disable the timeout for specific scripts with the static helper directly in
composer.json:

{
 "scripts": {
 "test": [
 "Composer\\Config::disableProcessTimeout",
 "phpunit"
]
 }
}

To disable the timeout for every script on a given project, you can use the
composer.json configuration:

{
 "config": {
 "process-timeout": 0
 }
}

It’s also possible to set the global environment variable to disable the timeout
of all following scripts in the current terminal environment:

export COMPOSER_PROCESS_TIMEOUT=0

To disable the timeout of a single script call, you must use the run-script composer
command and specify the --timeout parameter:

composer run-script --timeout=0 test

Referencing scripts

To enable script re-use and avoid duplicates, you can call a script from another
one by prefixing the command name with @:

{
 "scripts": {
 "test": [
 "@clearCache",
 "phpunit"
],
 "clearCache": "rm -rf cache/*"
 }
}

You can also refer a script and pass it new arguments:

{
 "scripts": {
 "tests": "phpunit",
 "testsVerbose": "@tests -vvv"
 }
}

Calling Composer commands

To call Composer commands, you can use @composer which will automatically
resolve to whatever composer.phar is currently being used:

{
 "scripts": {
 "test": [
 "@composer install",
 "phpunit"
]
 }
}

One limitation of this is that you can not call multiple composer commands in
a row like @composer install && @composer foo. You must split them up in a
JSON array of commands.

Executing PHP scripts

To execute PHP scripts, you can use @php which will automatically
resolve to whatever php process is currently being used:

{
 "scripts": {
 "test": [
 "@php script.php",
 "phpunit"
]
 }
}

One limitation of this is that you can not call multiple commands in
a row like @php install && @php foo. You must split them up in a
JSON array of commands.

You can also call a shell/bash script, which will have the path to
the PHP executable available in it as a PHP_BINARY env var.

Custom descriptions.

You can set custom script descriptions with the following in your composer.json:

{
 "scripts-descriptions": {
 "test": "Run all tests!"
 }
}

Note: You can only set custom descriptions of custom commands.

Troubleshooting

This is a list of common pitfalls on using Composer, and how to avoid them.

General

	Before asking anyone, run composer diagnose to check
for common problems. If it all checks out, proceed to the next steps.

	When facing any kind of problems using Composer, be sure to work with the
latest version. See self-update for details.

	Make sure you have no problems with your setup by running the installer’s
checks via curl -sS https://getcomposer.org/installer | php -- --check.

	Ensure you’re installing vendors straight from your composer.json via
rm -rf vendor && composer update -v when troubleshooting, excluding any
possible interferences with existing vendor installations or composer.lock
entries.

	Try clearing Composer’s cache by running composer clear-cache.

Package not found

	Double-check you don’t have typos in your composer.json or repository
branches and tag names.

	Be sure to set the right
minimum-stability. To get started or be
sure this is no issue, set minimum-stability to “dev”.

	Packages not coming from Packagist [https://packagist.org/] should
always be defined in the root package (the package depending on all
vendors).

	Use the same vendor and package name throughout all branches and tags of
your repository, especially when maintaining a third party fork and using
replace.

	If you are updating to a recently published version of a package, be aware that
Packagist has a delay of up to 1 minute before new packages are visible to Composer.

	If you are updating a single package, it may depend on newer versions itself.
In this case add the --with-dependencies argument or add all dependencies which
need an update to the command.

Package not found on travis-ci.org

	Check the “Package not found” item above.

	If the package tested is a dependency of one of its dependencies (cyclic
dependency), the problem might be that Composer is not able to detect the version
of the package properly. If it is a git clone it is generally alright and Composer
will detect the version of the current branch, but travis does shallow clones so
that process can fail when testing pull requests and feature branches in general.
The best solution is to define the version you are on via an environment variable
called COMPOSER_ROOT_VERSION. You set it to dev-master for example to define
the root package’s version as dev-master.
Use: before_script: COMPOSER_ROOT_VERSION=dev-master composer install to export
the variable for the call to composer.

Package not found in a Jenkins-build

	Check the “Package not found” item above.

	Reason for failing is similar to the problem which can occur on travis-ci.org: The
git-clone / checkout within Jenkins leaves the branch in a “detached HEAD”-state. As
a result, Composer is not able to identify the version of the current checked out branch
and may not be able to resolve a cyclic dependency. To solve this problem, you can use
the “Additional Behaviours” -> “Check out to specific local branch” in your Git-settings
for your Jenkins-job, where your “local branch” shall be the same branch as you are
checking out. Using this, the checkout will not be in detached state any more and cyclic
dependency is recognized correctly.

I have a dependency which contains a “repositories” definition in its composer.json, but it seems to be ignored.

The repositories configuration property is defined as root-only. It is not inherited. You can read more about the reasons behind this in the “why can’t
composer load repositories recursively?” article.
The simplest work-around to this limitation, is moving or duplicating the repositories definition into your root
composer.json.

I have locked a dependency to a specific commit but get unexpected results.

While Composer supports locking dependencies to a specific commit using the #commit-ref syntax, there are certain
caveats that one should take into account. The most important one is documented, but
frequently overlooked:

Note: While this is convenient at times, it should not be how you use
packages in the long term because it comes with a technical limitation. The
composer.json metadata will still be read from the branch name you specify
before the hash. Because of that in some cases it will not be a practical
workaround, and you should always try to switch to tagged releases as soon
as you can.

There is no simple work-around to this limitation. It is therefore strongly recommended that you do not use it.

Need to override a package version

Let’s say your project depends on package A, which in turn depends on a specific
version of package B (say 0.1). But you need a different version of said package B (say 0.11).

You can fix this by aliasing version 0.11 to 0.1:

composer.json:

{
 "require": {
 "A": "0.2",
 "B": "0.11 as 0.1"
 }
}

See aliases for more information.

Memory limit errors

Composer may sometimes fail on some commands with this message:

PHP Fatal error: Allowed memory size of XXXXXX bytes exhausted <...>

In this case, the PHP memory_limit should be increased.

Note: Composer internally increases the memory_limit to 1.5G.

To get the current memory_limit value, run:

php -r "echo ini_get('memory_limit').PHP_EOL;"

Try increasing the limit in your php.ini file (ex. /etc/php5/cli/php.ini for
Debian-like systems):

; Use -1 for unlimited or define an explicit value like 2G
memory_limit = -1

Composer also respects a memory limit defined by the COMPOSER_MEMORY_LIMIT environment variable:

COMPOSER_MEMORY_LIMIT=-1 composer.phar <...>

Or, you can increase the limit with a command-line argument:

php -d memory_limit=-1 composer.phar <...>

This issue can also happen on cPanel instances, when the shell fork bomb protection is activated. For more information, see the documentation [https://documentation.cpanel.net/display/68Docs/Shell+Fork+Bomb+Protection] of the fork bomb feature on the cPanel site.

Xdebug impact on Composer

To improve performance when the xdebug extension is enabled, Composer automatically restarts PHP without it.
You can override this behavior by using an environment variable: COMPOSER_ALLOW_XDEBUG=1.

Composer will always show a warning if xdebug is being used, but you can override this with an environment variable:
COMPOSER_DISABLE_XDEBUG_WARN=1. If you see this warning unexpectedly, then the restart process has failed:
please report this issue [https://github.com/composer/composer/issues].

“The system cannot find the path specified” (Windows)

	Open regedit.

	Search for an AutoRun key inside HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor,
HKEY_CURRENT_USER\Software\Microsoft\Command Processor
or HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Command Processor.

	Check if it contains any path to non-existent file, if it’s the case, remove them.

API rate limit and OAuth tokens

Because of GitHub’s rate limits on their API it can happen that Composer prompts
for authentication asking your username and password so it can go ahead with its work.

If you would prefer not to provide your GitHub credentials to Composer you can
manually create a token using the following procedure:

	Create [https://github.com/settings/tokens] an OAuth token on GitHub.
Read more [https://github.com/blog/1509-personal-api-tokens] on this.

	Add it to the configuration running composer config -g github-oauth.github.com <oauthtoken>

Now Composer should install/update without asking for authentication.

proc_open(): fork failed errors

If composer shows proc_open() fork failed on some commands:

PHP Fatal error: Uncaught exception 'ErrorException' with message 'proc_open(): fork failed - Cannot allocate memory' in phar

This could be happening because the VPS runs out of memory and has no Swap space enabled.

free -m

total used free shared buffers cached
Mem: 2048 357 1690 0 0 237
-/+ buffers/cache: 119 1928
Swap: 0 0 0

To enable the swap you can use for example:

/bin/dd if=/dev/zero of=/var/swap.1 bs=1M count=1024
/sbin/mkswap /var/swap.1
/sbin/swapon /var/swap.1

You can make a permanent swap file following this tutorial [https://www.digitalocean.com/community/tutorials/how-to-add-swap-on-ubuntu-14-04].

Degraded Mode

Due to some intermittent issues on Travis and other systems, we introduced a
degraded network mode which helps Composer finish successfully but disables
a few optimizations. This is enabled automatically when an issue is first
detected. If you see this issue sporadically you probably don’t have to worry
(a slow or overloaded network can also cause those time outs), but if it
appears repeatedly you might want to look at the options below to identify
and resolve it.

If you have been pointed to this page, you want to check a few things:

	If you are using ESET antivirus, go in “Advanced Settings” and disable “HTTP-scanner”
under “web access protection”

	If you are using IPv6, try disabling it. If that solves your issues, get in touch
with your ISP or server host, the problem is not at the Packagist level but in the
routing rules between you and Packagist (i.e. the internet at large). The best way to get
these fixed is raise awareness to the network engineers that have the power to fix it.
Take a look at the next section for IPv6 workarounds.

	If none of the above helped, please report the error.

Operation timed out (IPv6 issues)

You may run into errors if IPv6 is not configured correctly. A common error is:

The "https://getcomposer.org/version" file could not be downloaded: failed to
open stream: Operation timed out

We recommend you fix your IPv6 setup. If that is not possible, you can try the
following workarounds:

Workaround Linux:

On linux, it seems that running this command helps to make ipv4 traffic have a
higher prio than ipv6, which is a better alternative than disabling ipv6 entirely:

sudo sh -c "echo 'precedence ::ffff:0:0/96 100' >> /etc/gai.conf"

Workaround Windows:

On windows the only way is to disable ipv6 entirely I am afraid (either in windows or in your home router).

Workaround Mac OS X:

Get name of your network device:

networksetup -listallnetworkservices

Disable IPv6 on that device (in this case “Wi-Fi”):

networksetup -setv6off Wi-Fi

Run composer …

You can enable IPv6 again with:

networksetup -setv6automatic Wi-Fi

That said, if this fixes your problem, please talk to your ISP about it to
try and resolve the routing errors. That’s the best way to get things resolved
for everyone.

Composer hangs with SSH ControlMaster

When you try to install packages from a Git repository and you use the ControlMaster
setting for your SSH connection, Composer might hang endlessly and you see a sh
process in the defunct state in your process list.

The reason for this is a SSH Bug: https://bugzilla.mindrot.org/show_bug.cgi?id=1988

As a workaround, open a SSH connection to your Git host before running Composer:

ssh -t git@mygitserver.tld
composer update

See also https://github.com/composer/composer/issues/4180 for more information.

Zip archives are not unpacked correctly.

Composer can unpack zipballs using either a system-provided unzip utility or PHP’s
native ZipArchive class. The ZipArchive class is preferred on Windows. On other
OSes where ZIP files can contain permissions and symlinks, the unzip utility is
preferred. You’re advised to install it if you need these features.

Vendor binaries and the vendor/bin directory

What is a vendor binary?

Any command line script that a Composer package would like to pass along
to a user who installs the package should be listed as a vendor binary.

If a package contains other scripts that are not needed by the package
users (like build or compile scripts) that code should not be listed
as a vendor binary.

How is it defined?

It is defined by adding the bin key to a project’s composer.json.
It is specified as an array of files so multiple binaries can be added
for any given project.

{
 "bin": ["bin/my-script", "bin/my-other-script"]
}

What does defining a vendor binary in composer.json do?

It instructs Composer to install the package’s binaries to vendor/bin
for any project that depends on that project.

This is a convenient way to expose useful scripts that would
otherwise be hidden deep in the vendor/ directory.

What happens when Composer is run on a composer.json that defines vendor binaries?

For the binaries that a package defines directly, nothing happens.

What happens when Composer is run on a composer.json that has dependencies with vendor binaries listed?

Composer looks for the binaries defined in all of the dependencies. A
symlink is created from each dependency’s binaries to vendor/bin.

Say package my-vendor/project-a has binaries setup like this:

{
 "name": "my-vendor/project-a",
 "bin": ["bin/project-a-bin"]
}

Running composer install for this composer.json will not do
anything with bin/project-a-bin.

Say project my-vendor/project-b has requirements setup like this:

{
 "name": "my-vendor/project-b",
 "require": {
 "my-vendor/project-a": "*"
 }
}

Running composer install for this composer.json will look at
all of project-a’s binaries and install them to vendor/bin.

In this case, Composer will make vendor/my-vendor/project-a/bin/project-a-bin
available as vendor/bin/project-a-bin. On a Unix-like platform
this is accomplished by creating a symlink.

What about Windows and .bat files?

Packages managed entirely by Composer do not need to contain any
.bat files for Windows compatibility. Composer handles installation
of binaries in a special way when run in a Windows environment:

	A .bat file is generated automatically to reference the binary

	A Unix-style proxy file with the same name as the binary is generated
automatically (useful for Cygwin or Git Bash)

Packages that need to support workflows that may not include Composer
are welcome to maintain custom .bat files. In this case, the package
should not list the .bat file as a binary as it is not needed.

Can vendor binaries be installed somewhere other than vendor/bin?

Yes, there are two ways an alternate vendor binary location can be specified:

	Setting the bin-dir configuration setting in composer.json

	Setting the environment variable COMPOSER_BIN_DIR

An example of the former looks like this:

{
 "config": {
 "bin-dir": "scripts"
 }
}

Running composer install for this composer.json will result in
all of the vendor binaries being installed in scripts/ instead of
vendor/bin/.

You can set bin-dir to ./ to put binaries in your project root.

Versions and constraints

Composer Versions vs VCS Versions

Because Composer is heavily geared toward utilizing version control systems
like git, the term “version” can be a little ambiguous. In the sense of a
version control system, a “version” is a specific set of files that contain
specific data. In git terminology, this is a “ref”, or a specific commit,
which may be represented by a branch HEAD or a tag. When you check out that
version in your VCS – for example, tag v1.1 or commit e35fa0d –, you’re
asking for a single, known set of files, and you always get the same files back.

In Composer, what’s often referred to casually as a version – that is,
the string that follows the package name in a require line (e.g., ~1.1 or
1.2.*) – is actually more specifically a version constraint. Composer
uses version constraints to figure out which refs in a VCS it should be
checking out (or simply to verify that a given library is acceptable in
the case of a statically-maintained library with a version specification
in composer.json).

VCS Tags and Branches

For the following discussion, let’s assume the following sample library
repository:

~/my-library$ git branch
v1
v2
my-feature
another-feature

~/my-library$ git tag
v1.0
v1.0.1
v1.0.2
v1.1-BETA
v1.1-RC1
v1.1-RC2
v1.1
v1.1.1
v2.0-BETA
v2.0-RC1
v2.0
v2.0.1
v2.0.2

Tags

Normally, Composer deals with tags (as opposed to branches – if you don’t
know what this means, read up on
version control systems [https://en.wikipedia.org/wiki/Version_control#Common_vocabulary]).
When you write a version constraint, it may reference a specific tag (e.g.,
1.1) or it may reference a valid range of tags (e.g., >=1.1 <2.0, or
~4.0). To resolve these constraints, Composer first asks the VCS to list
all available tags, then creates an internal list of available versions based
on these tags. In the above example, composer’s internal list includes versions
1.0, 1.0.1, 1.0.2, the beta release of 1.1, the first and second
release candidates of 1.1, the final release version 1.1, etc…. (Note
that Composer automatically removes the ‘v’ prefix in the actual tagname to
get a valid final version number.)

When Composer has a complete list of available versions from your VCS, it then
finds the highest version that matches all version constraints in your project
(it’s possible that other packages require more specific versions of the
library than you do, so the version it chooses may not always be the highest
available version) and it downloads a zip archive of that tag to unpack in the
correct location in your vendor directory.

Branches

If you want Composer to check out a branch instead of a tag, you need to point it to the branch using the special dev-* prefix (or sometimes suffix; see below). If you’re checking out a branch, it’s assumed that you want to work on the branch and Composer actually clones the repo into the correct place in your vendor directory. For tags, it copies the right files without actually cloning the repo. (You can modify this behavior with –prefer-source and –prefer-dist, see install options.)

In the above example, if you wanted to check out the my-feature branch, you would specify dev-my-feature as the version constraint in your require clause. This would result in Composer cloning the my-library repository into my vendor directory and checking out the my-feature branch.

When branch names look like versions, we have to clarify for composer that we’re trying to check out a branch and not a tag. In the above example, we have two version branches: v1 and v2. To get Composer to check out one of these branches, you must specify a version constraint that looks like this: v1.x-dev. The .x is an arbitrary string that Composer requires to tell it that we’re talking about the v1 branch and not a v1 tag (alternatively, you can name the branch v1.x instead of v1). In the case of a branch with a version-like name (v1, in this case), you append -dev as a suffix, rather than using dev- as a prefix.

Minimum Stability

There’s one more thing that will affect which files are checked out of a library’s VCS and added to your project: Composer allows you to specify stability constraints to limit which tags are considered valid. In the above example, note that the library released a beta and two release candidates for version 1.1 before the final official release. To receive these versions when running composer install or composer update, we have to explicitly tell Composer that we are ok with release candidates and beta releases (and alpha releases, if we want those). This can be done using either a project-wide minimum-stability value in composer.json or using “stability flags” in version constraints. Read more on the schema page.

Writing Version Constraints

Now that you have an idea of how Composer sees versions, let’s talk about how
to specify version constraints for your project dependencies.

Exact Version Constraint

You can specify the exact version of a package. This will tell Composer to
install this version and this version only. If other dependencies require
a different version, the solver will ultimately fail and abort any install
or update procedures.

Example: 1.0.2

Version Range

By using comparison operators you can specify ranges of valid versions. Valid
operators are >, >=, <, <=, !=.

You can define multiple ranges. Ranges separated by a space ()
or comma (,) will be treated as a logical AND. A double pipe (||)
will be treated as a logical OR. AND has higher precedence than OR.

Note: Be careful when using unbounded ranges as you might end up
unexpectedly installing versions that break backwards compatibility.
Consider using the caret operator instead for safety.

Examples:

	>=1.0

	>=1.0 <2.0

	>=1.0 <1.1 || >=1.2

Hyphenated Version Range (-)

Inclusive set of versions. Partial versions on the right include are completed
with a wildcard. For example 1.0 - 2.0 is equivalent to >=1.0.0 <2.1 as the
2.0 becomes 2.0.*. On the other hand 1.0.0 - 2.1.0 is equivalent to
>=1.0.0 <=2.1.0.

Example: 1.0 - 2.0

Wildcard Version Range (.*)

You can specify a pattern with a * wildcard. 1.0.* is the equivalent of
>=1.0 <1.1.

Example: 1.0.*

Next Significant Release Operators

Tilde Version Range (~)

The ~ operator is best explained by example: ~1.2 is equivalent to
>=1.2 <2.0.0, while ~1.2.3 is equivalent to >=1.2.3 <1.3.0. As you can see
it is mostly useful for projects respecting semantic
versioning [https://semver.org/]. A common usage would be to mark the minimum
minor version you depend on, like ~1.2 (which allows anything up to, but not
including, 2.0). Since in theory there should be no backwards compatibility
breaks until 2.0, that works well. Another way of looking at it is that using
~ specifies a minimum version, but allows the last digit specified to go up.

Example: ~1.2

Note: Although 2.0-beta.1 is strictly before 2.0, a version constraint
like ~1.2 would not install it. As said above ~1.2 only means the .2
can change but the 1. part is fixed.

Note: The ~ operator has an exception on its behavior for the major
release number. This means for example that ~1 is the same as ~1.0 as
it will not allow the major number to increase trying to keep backwards
compatibility.

Caret Version Range (^)

The ^ operator behaves very similarly but it sticks closer to semantic
versioning, and will always allow non-breaking updates. For example ^1.2.3
is equivalent to >=1.2.3 <2.0.0 as none of the releases until 2.0 should
break backwards compatibility. For pre-1.0 versions it also acts with safety
in mind and treats ^0.3 as >=0.3.0 <0.4.0.

This is the recommended operator for maximum interoperability when writing
library code.

Example: ^1.2.3

Stability Constraints

If you are using a constraint that does not explicitly define a stability,
Composer will default internally to -dev or -stable, depending on the
operator(s) used. This happens transparently.

If you wish to explicitly consider only the stable release in the comparison,
add the suffix -stable.

Examples:

Constraint | Internally
——————- | ————————
1.2.3 | =1.2.3.0-stable
>1.2 | >1.2.0.0-stable
>=1.2 | >=1.2.0.0-dev
>=1.2-stable | >=1.2.0.0-stable
<1.3 | <1.3.0.0-dev
<=1.3 | <=1.3.0.0-stable
1 - 2 | >=1.0.0.0-dev <3.0.0.0-dev
~1.3 | >=1.3.0.0-dev <2.0.0.0-dev
1.4.* | >=1.4.0.0-dev <1.5.0.0-dev

To allow various stabilities without enforcing them at the constraint level
however, you may use stability-flags like
@<stability> (e.g. @dev) to let composer know that a given package
can be installed in a different stability than your default minimum-stability
setting. All available stability flags are listed on the minimum-stability
section of the schema page.

Summary

"require": {
 "vendor/package": "1.3.2", // exactly 1.3.2

 // >, <, >=, <= | specify upper / lower bounds
 "vendor/package": ">=1.3.2", // anything above or equal to 1.3.2
 "vendor/package": "<1.3.2", // anything below 1.3.2

 // * | wildcard
 "vendor/package": "1.3.*", // >=1.3.0 <1.4.0

 // ~ | allows last digit specified to go up
 "vendor/package": "~1.3.2", // >=1.3.2 <1.4.0
 "vendor/package": "~1.3", // >=1.3.0 <2.0.0

 // ^ | doesn't allow breaking changes (major version fixed - following semver)
 "vendor/package": "^1.3.2", // >=1.3.2 <2.0.0
 "vendor/package": "^0.3.2", // >=0.3.2 <0.4.0 // except if major version is 0
}

Testing Version Constraints

You can test version constraints using semver.mwl.be [https://semver.mwl.be].
Fill in a package name and it will autofill the default version constraint
which Composer would add to your composer.json file. You can adjust the
version constraint and the tool will highlight all releases that match.

Default Solver Policy

A solver policy defines behaviour variables of the dependency solver. It decides
which versions are considered newer than others, which packages should be
preferred over others and whether operations like downgrades or uninstall are
allowed.

Selection of preferred Packages

The following describe package pool situations with user requests and the
resulting order in which the solver will try to install them.

The rules are to be applied in the order of these descriptions.

Repository priorities

Packages Repo1.Av1, Repo2.Av1

	priority(Repo1) >= priority(Repo2) => (Repo1.Av1, Repo2.Av1)

	priority(Repo1) < priority(Repo2) => (Repo2.Av1, Repo1.Av1)

Package versions

Packages: Av1, Av2, Av3

	Installed: Av2

Request: install A

	(Av3)

Virtual Packages (provides)

Packages Av1, Bv1

	Av1 provides Xv1

	Bv1 provides Xv1

Request: install X

	priority(Av1.repo) >= priority(Bv1.repo) => (Av1, Bv1)

	priority(Av1.repo) < priority(Bv1.repo) => (Bv1, Av1)

Package replacements

Packages: Av1, Bv2

	Bv2 replaces Av1

Request: install A

	priority(Av1.repo) >= priority(Bv2.repo) => (Av1, Bv2)

	priority(Av1.repo) < priority(Bv2.repo) => (Bv2, Av1)

Bv2 version is ignored, only the replacement version for A matters.

How do I install a package to a custom path for my framework?

Each framework may have one or many different required package installation
paths. Composer can be configured to install packages to a folder other than
the default vendor folder by using
composer/installers [https://github.com/composer/installers].

If you are a package author and want your package installed to a custom
directory, simply require composer/installers and set the appropriate type.
This is common if your package is intended for a specific framework such as
CakePHP, Drupal or WordPress. Here is an example composer.json file for a
WordPress theme:

{
 "name": "you/themename",
 "type": "wordpress-theme",
 "require": {
 "composer/installers": "~1.0"
 }
}

Now when your theme is installed with Composer it will be placed into
wp-content/themes/themename/ folder. Check the
current supported types [https://github.com/composer/installers#current-supported-package-types]
for your package.

As a package consumer you can set or override the install path for a package
that requires composer/installers by configuring the installer-paths extra. A
useful example would be for a Drupal multisite setup where the package should be
installed into your sites subdirectory. Here we are overriding the install path
for a module that uses composer/installers:

{
 "extra": {
 "installer-paths": {
 "sites/example.com/modules/{$name}": ["vendor/package"]
 }
 }
}

Now the package would be installed to your folder location, rather than the default
composer/installers determined location.

Note: You cannot use this to change the path of any package. This is only
applicable to packages that require composer/installers and use a custom type
that it handles.

How do I install Composer programmatically?

As noted on the download page, the installer script contains a
signature which changes when the installer code changes and as such
it should not be relied upon in the long term.

An alternative is to use this script which only works with UNIX utilities:

#!/bin/sh

EXPECTED_SIGNATURE="$(wget -q -O - https://composer.github.io/installer.sig)"
php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
ACTUAL_SIGNATURE="$(php -r "echo hash_file('sha384', 'composer-setup.php');")"

if ["$EXPECTED_SIGNATURE" != "$ACTUAL_SIGNATURE"]
then
 >&2 echo 'ERROR: Invalid installer signature'
 rm composer-setup.php
 exit 1
fi

php composer-setup.php --quiet
RESULT=$?
rm composer-setup.php
exit $RESULT

The script will exit with 1 in case of failure, or 0 on success, and is quiet
if no error occurs.

Alternatively, if you want to rely on an exact copy of the installer, you can fetch
a specific version from GitHub’s history. The commit hash should be enough to
give it uniqueness and authenticity as long as you can trust the GitHub servers.
For example:

wget https://raw.githubusercontent.com/composer/getcomposer.org/76a7060ccb93902cd7576b67264ad91c8a2700e2/web/installer -O - -q | php -- --quiet

You may replace the commit hash by whatever the last commit hash is on
https://github.com/composer/getcomposer.org/commits/master

How do I install untrusted packages safely? Is it safe to run Composer as superuser or root?

Certain Composer commands, including exec, install, and update allow third party code to
execute on your system. This is from its “plugins” and “scripts” features. Plugins and scripts have
full access to the user account which runs Composer. For this reason, it is strongly advised to
avoid running Composer as super-user/root.

You can disable plugins and scripts during package installation or updates with the following
syntax so only Composer’s code, and no third party code, will execute:

composer install --no-plugins --no-scripts ...
composer update --no-plugins --no-scripts ...

The exec command will always run third party code as the user which runs composer.

In some cases, like in CI systems or such where you want to install untrusted dependencies, the
safest way to do it is to run the above command.

Should I commit the dependencies in my vendor directory?

The general recommendation is no. The vendor directory (or wherever your
dependencies are installed) should be added to .gitignore/svn:ignore/etc.

The best practice is to then have all the developers use Composer to install
the dependencies. Similarly, the build server, CI, deployment tools etc should
be adapted to run Composer as part of their project bootstrapping.

While it can be tempting to commit it in some environment, it leads to a few
problems:

	Large VCS repository size and diffs when you update code.

	Duplication of the history of all your dependencies in your own VCS.

	Adding dependencies installed via git to a git repo will show them as
submodules. This is problematic because they are not real submodules, and you
will run into issues.

If you really feel like you must do this, you have a few options:

	Limit yourself to installing tagged releases (no dev versions), so that you
only get zipped installs, and avoid problems with the git “submodules”.

	Use –prefer-dist or set preferred-install to dist in your
config.

	Remove the .git directory of every dependency after the installation, then
you can add them to your git repo. You can do that with rm -rf vendor/**/.git
in ZSH or find vendor/ -type d -name ".git" -exec rm -rf {} \; in Bash.
but this means you will have to delete those dependencies from disk before
running composer update.

	Add a .gitignore rule (/vendor/**/.git) to ignore all the vendor .git folders.
This approach does not require that you delete dependencies from disk prior to
running a composer update.

Which version numbering system does Composer itself use?

Composer uses Semantic Versioning (aka SemVer)
2.0.0 [https://semver.org/spec/v2.0.0.html].

Why are unbound version constraints a bad idea?

A version constraint without an upper bound such as *, >=3.4 or
dev-master will allow updates to any future version of the dependency.
This includes major versions breaking backward compatibility.

Once a release of your package is tagged, you cannot tweak its dependencies
anymore in case a dependency breaks BC - you have to do a new release but the
previous one stays broken.

The only good alternative is to define an upper bound on your constraints,
which you can increase in a new release after testing that your package is
compatible with the new major version of your dependency.

For example instead of using >=3.4 you should use ~3.4 which allows all
versions up to 3.999 but does not include 4.0 and above. The ^ operator
works very well with libraries following semantic versioning [https://semver.org].

Note: As a package maintainer, you can make the life of your users easier
by providing an alias version for your development
branch to allow it to match bound constraints.

Why are version constraints combining comparisons and wildcards a bad idea?

This is a fairly common mistake people make, defining version constraints in
their package requires like >=2.* or >=1.1.*.

If you think about it and what it really means though, you will quickly
realize that it does not make much sense. If we decompose >=2.*, you
have two parts:

	>=2 which says the package should be in version 2.0.0 or above.

	2.* which says the package should be between version 2.0.0 (inclusive)
and 3.0.0 (exclusive).

As you see, both rules agree on the fact that the package must be >=2.0.0,
but it is not possible to determine if when you wrote that you were thinking
of a package in version 3.0.0 or not. Should it match because you asked for
>=2 or should it not match because you asked for a 2.*?

For this reason, Composer throws an error and says that this is invalid.
The easy way to fix it is to think about what you really mean, and use only
one of those rules.

Why can’t Composer load repositories recursively?

You may run into problems when using custom repositories because Composer does
not load the repositories of your requirements, so you have to redefine those
repositories in all your composer.json files.

Before going into details as to why this is like that, you have to understand
that the main use of custom VCS & package repositories is to temporarily try
some things, or use a fork of a project until your pull request is merged, etc.
You should not use them to keep track of private packages. For that you should
rather look into Private Packagist [https://packagist.com] which lets you
configure all your private packages in one place, and avoids the slow-downs
associated with inline VCS repositories.

There are three ways the dependency solver could work with custom repositories:

	Fetch the repositories of root package, get all the packages from the defined
repositories, then resolve requirements. This is the current state and it works well
except for the limitation of not loading repositories recursively.

	Fetch the repositories of root package, while initializing packages from the
defined repos, initialize recursively all repos found in those packages, and
their package’s packages, etc, then resolve requirements. It could work, but it
slows down the initialization a lot since VCS repos can each take a few seconds,
and it could end up in a completely broken state since many versions of a package
could define the same packages inside a package repository, but with different
dist/source. There are many many ways this could go wrong.

	Fetch the repositories of root package, then fetch the repositories of the
first level dependencies, then fetch the repositories of their dependencies, etc,
then resolve requirements. This sounds more efficient, but it suffers from the
same problems as the second solution, because loading the repositories of the
dependencies is not as easy as it sounds. You need to load all the repos of all
the potential matches for a requirement, which again might have conflicting
package definitions.

Composer type repository fixtures

This directory contains some examples of what composer type repositories can
look like. They serve as illustrating examples accompanying the docs, but can
also be used as (initial) fixtures for tests.

	repo-composer-plain is a simple, plain packages.json file

	repo-composer-with-includes uses the includes mechanism

	repo-composer-with-providers uses the providers mechanism

Sample Packages used in these fixtures

All these repositories contain the following packages.

	foo/bar versions 1.0.0, 1.0.1 and 1.1.0; dev-default and 1.0.x-dev branches.
On dev-default and in 1.1.0, bar/baz ~1.0 is required.

	qux/quux only has a dev-default branch. It replaces gar/nix.

	gar/nix has a 1.0.0 version and a dev-default branch. It is being replaced
by qux/quux.

	bar/baz has a 1.0.0 version and 1.0.x-dev as well as dev-default branches.
Additionally, 1.1.x-dev is a branch alias for dev-default.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

